
Figure 1: Gustav Adolf Feodor Wilhelm Ludwig Mie, later in life.

As discussed on the Physics of Scattering page, one way to change the real index of
refraction and thereby cause elastic scattering is to imbed a particle of some index of re-
fraction within a medium with a different index of refraction. If the imbedded particle is a
homogeneous sphere (of any radius), the solution of Maxwell’s equations for a plane wave
incident onto the sphere is now called Mie theory.

Gustav Mie (1868-1957) began his career in mathematics and mineralogy. One of the
mysteries of the late 1800s was why colloidal suspensions of metallic particles displayed a
rainbow of colors. Figure figure2 shows an example of red to violet colors in suspensions
of gold particles. The difference in colors is due to the different sizes of the gold particles,
which are smaller than the wavelength of visible light. Understanding the optical effects of
small concentrations of very small particles had important industrial applications because
adding metallic nanoparticles to molten glass was (and still is) a common way to make glass
of different colors.

Mie approached this problem by working out the solution to scattering of light by small
spheres, starting with Maxwell’s equations. His approach is all the more remarkable because,
at the time, the importance of Maxwell’s equations was not yet recognized by all physicists.
His classic paper, Mie (1908), is titled “Beiträge zur Optik trüber Medien, speziell kolloidaler
Metallösungen,” or “Contributions to the optics of turbid media, particularly colloidal metal
solutions.” Mie used his solution equations to explain how particle size and absorption
properties can explain the different colors. After that success, he moved on to other problems
and never published another paper on the scattering of light.
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Figure 2: Suspensions of gold nanoparticles of various sizes showing a range of colors. Photo
by Aleksandar Kondinski from en.wikipedia.org/wiki/Colloidal gold.
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The fundamental importance of Mie’s paper went unrecognized for the next 50 years,
apparently even by Mie himself. He does not even mention this paper in his autobiograph-
ical notes of 1948. This is perhaps understandable because his solution equations are so
complicated that they cannot be evaluated except by modern computers. There are several
short biographies of Mie, e.g.,Lilienfeld (1991) and Stout and Bonod (2020).

Statement of the Problem

This problem is formulated as follows.

• We have given a single, homogeneous sphere of radius ρ, whose material is a dielectric
with a complex index of refraction ms = ns + iks. Here ns is the real index of refrac-
tion, and ks is the complex index of refraction. The complex index is related to the
absorption coefficient as of the sphere material by as(λ) = 4πks(λ)/λ, where λ is the
wavelength in vacuo corresponding to the frequency ν of an electromagnetic wave.

• The sphere is imbedded in a non-absorbing, homogeneous, infinite medium whose index
of refraction is mm = nm.

• A plane electromagnetic wave of frequency ν is incident onto the sphere. The wave-
length on the incident light in the medium is thus λm = c/(nmν) = λ/nm, which
corresponds to a wavelength in vacuo of λ = c/ν.

• We wish to find the electric field within the sphere and throughout the surrounding
medium. That is, we wish to determine how the incident light is absorbed and scattered
by the sphere, including the angular distribution of the scattered light and its state of
polarization.

The solution of this geometrically simple problem is exceptionally difficult. Indeed, this
is one of the classic problems of applied mathematics, and its solution was attempted (and
partially achieved in various forms) by many of the most illustrious figures of nineteenth-
century physics. For historical reasons, Mie usually gets credit for the first complete solution
of the problem, and his solution of Maxwell’s equations is commonly called Mie theory. Mie’s
paper, Mie (1908), is 69 pages of dense equations, and I doubt that more than a handful of
people have actually read the entire paper, although it has been cited in tens of thousands
of papers. Bohren and Huffman (1983) say (on page 93) that someone who works through
the details of Mie’s solution will have “acquired virtue through suffering.” I second that.
Mie’s paper is full of scary equations (see Fig. figure4) connected by phrases like “It is easily
shown that...”, “Symmetry shows that...”, and “You can convince yourself that...”

The details of Mie’s solution are given (along with much needed extra explanation and
modern notation) in the texts by van de Hulst (1957) and by Bohren and Huffman (1983).
The purpose of the present page is to state the problem and outline its solution, so that you
will understand the inputs to and outputs from computer programs that implement Mie’s
equations, and also have a qualitative idea of what is happening deep inside those programs.
The following web page shows examples of Mie-computed quantities.
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Geometry

Figure figure3 shows the geometry of Mie theory. An incident electromagnetic plane wave
(i.e., a collimated beam of light) of frequency ν (cycles per second) is incident onto a ho-
mogeneous spherical particle at the origin of a coordinate system. The coordinate system is
chosen so that the wave is propagating in the +z direction, and the origin of the coordinate
system is chosen so that the wave is a cosine at time 0. The incident electric field in the
medium of real index of refraction nm then can be written as

Ei(z, t) = Eoi cos(kz − ωt) ,

where k = 2π/λm = 2πnm/λ is the wavenumber (cycles per meter) in the medium, and
ω = 2πν is the angular frequency (radians per second). Eoi is the amplitude of the incident
electric field vector, and the direction of propagation is êz. Life will be mathematically easier
later on if we write the incident wave as a complex variable,

Ei(z, t) = Eoie
i(kz−ωt) ,

and keep in mind that we’re interested in only the real part of the complex variable Ei(z, t).
We’re dealing with Maxwell’s equations, which involve both electric and magnetic fields.
However, if you know one, then you can get the other, so it suffices to discuss just the
electric field.

The incident wave Ei will interact with the particle at the origin of the coordinate system
and generate a scattered wave Es traveling in direction êr, which is at polar and azimuthal
angles (θ, φ) as seen in Fig. figure3. The incident direction êz and the scattered direction êr
define the scattering plane, part of which is shaded in pink in the figure.

Light is a transverse electromagnetic wave, which means that the electric and magnetic
fields are perpendicular to the direction of travel. The incident wave is also arbitrarily
polarized. An arbitrary state of polarization of E(z, t) can be written as a combination of
two components, which are orthogonal to the direction of propagation. We choose these two
directions to be parallel and perpendicular to the scattering plane. Thus we can write the
incident electric field as

Ei = E‖i ê‖i + E⊥i ê⊥i , (1)

where the parallel (ê‖i) and perpendicular (ê⊥i) directions are shown by the thin green
arrows in Fig. figure3. Note that ê⊥i × ê‖i = êz. At large distances from the particle
(the so-called “far field”), the scattered field becomes transverse and can also be written
as a combination of components in directions parallel and perpendicular to the scattering
plane: Es = E‖s ê‖s +E⊥s ê⊥s. The directions ê‖s and ê⊥s are parallel and perpendicular to
the scattering plane at the point (r, θ, φ) where the scattered light is being measured by an
instrument looking towards the particle at the origin. As seen in Fig. figure3, ê⊥s = ê⊥i but
ê‖s 6= ê‖i. In particular,

ê‖s = êθ , ê⊥s = −êφ , and ê⊥s × ê‖s = êr ,

where êr, êθ, êφ give the directions of increasing r, θ, φ in the spherical coordinate system.
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Figure 3: Geometry for Mie theory. Unit direction vectors are indicated by hatted letters,
êz, ê⊥i, etc. The thick green arrows represent the incident plane wave, and the thick red
arrow represents the scattered wave. The scattering particle is the blue sphere at the origin.
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The Solution

For an arbitrary (i.e., non-spherical and/or inhomogeneous) particle at the origin, the scat-
tered wave can be written as[

E‖s
E⊥s

]
=
eik(r−z)

−ikr

[
S2&S3

S4&S1

] [
E‖i
E⊥i

]
. (2)

The four Sj, j = 1, 2, 3, 4, are the elements of the amplitude scattering matrix. These func-
tions transform the amplitudes of the incident electric field into the amplitudes of the scat-
tered field. For an arbitrary particle, all four elements of the amplitude scattering matrix are
non-zero and depend on both the polar θ and azimuthal φ scattering angles. These functions
of course depend on the particle size, shape, and composition, as well as on the wavelength
of the incident light, and it is that dependence that we wish to determine.

This present discussion accepts the form of Eq. (likesection2) as given to us by the
physicists, but it is worth a comment. When working with 3D waves, it is common to seek
a solution that separates the radial (r) and angular (θ, φ) variables. Here the Sj depend
only on (θ, φ). The irradiance of an electromagnetic wave is proportional to square of the
amplitude of the electromagnetic field. Squaring Eq. (likesection2) gives a factor of∣∣∣∣eik(r−z)−ikr

∣∣∣∣2 =
1

k2r2
.

We are considering scattering by a single particle, so the farther away we are from the
particle, the less the irradiance detected by a sensor looking at the particle will be by a
factor of 1/r2. This result is known as the “r2 law for irradiance.” We see here how the
form of (likesection2) for the scattered field has the r2 law for irradiance built into the radial
dependence of the electric field amplitudes. In particular, we are interested in the “far field”
of the scattered light, which means that kr >> 1. Note also that since kr is non-dimensional,
so must be the Sj matrix elements.

For a homogeneous spherical particle, S3 = S4 = 0 and the amplitude scattering matrix
reduces to [

E‖s
E⊥s

]
=
eik(r−z)

−ikr

[
S2&0
0&S1

] [
E‖i
E⊥i

]
. (3)

Now comes the hard part: how to compute S1 and S2 given the particle radius ρ, the
complex index of refraction of the spherical particle, ms = ns + iks, and the real index of
refraction of the medium, mm = nm.

[Comment on notation. It is common in Mie theory papers to use a as the radius of
the spherical particle. However, in applications of Mie theory to optical oceanography, that
leads to confusion with the absorption coefficient. Mie used ρ, and that’s good enough for
me (pun intended). There is also confusion between the common use of k as wavenumber
and k as the complex part of the index of refraction; Bohren and Huffman use a Roman k
for wavenumber and an italic k for the imaginary part of the index of refraction. I avoid that
subtlety by using k for wavenumber and ks for the imaginary part of the index of refraction
of the sphere, but then I’m using a subscript s for both “sphere” and “scattered,” although
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Figure 4: Two of the pages of Mie’s 1908 paper.

context should keep things clear. Bohren and Huffman use ρ for the phase shift paramenter
2x(ns/nm − 1). Choosing good notation is a never-ending problem.]

The incident and scattered electric fields must satisfy both Maxwell’s equations and
boundary conditions for the behavior of the electric field at the surface of the sphere and at
infinity. It is these boundary conditions that determine exactly which of all possible electric
fields that satisfy Maxwell’s equations is the one particular field that describes scattering by
a particular sphere.

Figure figure4 shows a couple of the pages of Mie’s 1908 paper. This figure should be
sufficient to convince you that we should skip the mathematical details and jump straight
to the answer.

Mie’s solution is in the form of infinite series of very complicated mathematical functions.
The terms in these series depend on a size parameter x,

x =
2πρ

λm
=

2π ρnm
λ

, (4)

and the refractive index of the sphere relative to that of the surrounding medium,

m =
ns
nm

+ i
ks
nm

. (5)
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The size parameter x is a measure of the sphere’s size relative to the wavelength of the
incident light in the surrounding medium. This parameter shows why oceanographers tend
to use wavelength rather than frequency as the measure of light’s oscillations: it is particle
size relative to wavelength that is important for scattering (whether or not the particle is
spherical). Note that the real part of the relative refractive index m can be less than 1, for
example if the spherical particle is an air bubble (ns ≈ 1) in water (nm ≈ 1.33).

Mie’s solution (in modern notation) is

S1 = &
∞∑
n=1

2n+ 1

n(n+ 1)
(anπn + bnτn)

S2 = &
∞∑
n=1

2n+ 1

n(n+ 1)
(anτn + bnπn)

(6)

where

an = &
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx) ξ′n(x)− ξn(x)ψ′n(mx)

bn = &
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx) ξ′n(x)−mξn(x)ψ′n(mx)

(7)

The an and bn are often called the “Mie coefficients.” These functions describe multipole
expansions of the electric (an) and magnetic (bn) fields of the scattered wave: n = 1 is the
dipole term, n = 2 is the quadrapole term, and so on. The ψn and ξn are Riccati-Bessel
functions; the prime denotes derivatives of these functions with respect to the argument of
the function (either x or mx). Riccati-Bessel functions are obtained from something called
spherical Bessel and spherical Hankel functions, which in turn are obtained from something
called Bessel functions of the first and second kind, which are themselves.... You get the
idea. You eventually get down to something normal people can understand, likes sines and
cosines. The πn and τn are angle-dependent functions obtained by recursion relations:

πn = &

(
2n− 1

n− 1
cos θ

)
πn−1 −

n

n− 1
πn−2

τn = &(n cos θ) πn − (n+ 1)πn−1

(8)

starting with π0 = 0 and π1 = 1.
Thus the amplitude functions S1 and S2 depend on the particle size and index of refraction

via the x and m in the an and bn, and on scattering angle via the cos θ factors in πn and τn.
For the geometry of Fig. figure3, the polar angle θ is the scattering angle (ψ is my preferred
symbol for scattering angle), and the results are independent of the azimuthal scattering
angle φ because of the symmetry of the sphere. It should be noted that if m = 1 + i0, i.e.,
if the sphere has the same index of refraction as the surrounding medium, then an = 0 and
bn = 0 for all n. That is to say, there is no scattering. This observation highlights that
scattering is caused by differences in index of refraction.

Mie Theory is exact and valid for all sizes of spheres, indices of refraction,
and wavelengths.
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However, it is not possible to compute the sums of the infinite series (align6) analytically.
The sums must be approximated numerically by adding only a finite number of terms in the
series. If the size parameter x is less than roughly 10, e.g. typically when ρ < λ, only the
first few terms are needed to get an accurate approximation for S1 and S2. However, for
large size parameters, e.g. when ρ >> λ, many terms must be computed and convergence
of the series is very slow. A well established rule seems to be that the number of terms that
must be computed is the integer closest to

Nmax = x+ 4x1/3 + 2 .

Suppose we want to compute scattering by a spherical phytoplankton of radius ρ = 0.5 µm,
real index of refraction ns = 1.4, in water with nm = 1.33, at a wavelength of λ = 500 nm.
The size parameter is then x = 8.36 and Nmax = 18. That is no problem for a computer.
But suppose we want to compute the scattering for a rain drop of size ρ = 1 mm, ns = 1.33,
in air with nm = 1.0, and for λ = 500 nm. Then x = 12, 566 and Nmax = 12, 661. That can
take a while.

[The BHMIE code used to generate the examples on the next page is restricted to x <
2×104 for reasons of computational accuracy. However, specialized codes have been designed
for use with size parameters larger than 107, but you are then getting into the world of
quadruple-precision arithmetic and supercomputers.) In Mie’s original paper, he had to
do the calculations by hand. He was able to compute only the first three terms of the
infinite series, which limited his applications to particles less that 200 nm in size for visible
wavelengths (x of order 1). However, that was sufficient to explain the optical effects of
scattering by the colloidal particles that prompted his study.]

It must be remembered that S1 and S2 are complex variables that transform incident
complex electric fields into scattered complex electric fields. In oceanography, we are inter-
ested in scattered energy, which can be detected and turned into radiances. We are also
interested in the shape of scattering phase function as a function of scattering angle, and in
other quantities like absorption and scattering coefficients. The energy in an electric field is
proportional to its amplitude squared so, not surprisingly, the quantities of real interest are
obtained from various functions of the absolute values squared of S1 and S2. The |Sj|2 are
real functions that are proportional to the scattered power (i.e., to scattered irradiance).

Suppose that the incident light is polarized parallel to the scattering plane, i.e. E⊥i = 0
in Eq. (equation1). Then Eq. likesection2 shows that for an arbitrary particle, this incident
light can be scattered into light that has components that are both parallel and perpendicular
to the scattering plane. But for a spherical particle, Eq. likesection3 shows that incident
light polarized parallel (perpendicular) to the scattering plane is scattered into light that
remains polarized parallel (perpendicular) to the scattering plane.

Thus the angular pattern (ignoring normalization factors) of the incident parallel-polarized
light that is scattered parallel to the scattering plane is given by

I‖s = |S2|2 = S2S
∗
2 ,

where S∗ denotes complex conjugation. Likewise the perpendicular-incident to perpendicular-
scattered pattern is given by I⊥s = |S1|2. It is therefore common to plot |S1|2 and S2|2 as
functions of the scattering angle to see how these two polarization states are scattered.
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I‖s and I⊥s can be thought of as unnormalized scattering phase functions for particular
states of polarization. The oceanographer’s scattering phase function for unpolarized light
is, to within a normalization factor, given by

β̃ =
1

2

(
|S1|2 + |S2|2

)
=

1

2
(S1S

∗
1 + S2S

∗
2) . (9)

A word of warning here: Mie codes return S1(ψ) and S2(ψ) for the set of scattering angles
requested by the user (e.g., ψ from 0 to 180 deg by 0.1 deg). You can then use Eq. equation9
to compute the phase function, but you can be guaranteed that it will be unnormalized. For
example, if you study Bohren and Huffman (and you should), you will see many places where
they say something like “where we have omitted the factor 1/k2r2” (page 113). You need
to integrate the β̃ obtained from equation9 to determine the needed normalization factor.
A phase function used in a radiative transfer code such as HydroLight must satisfy the
normalization 2π

∫
β̃(ψ) sinψ dψ = 1.

Additional output of Mie codes is usually given as various absorption and scattering
efficiencies. The absorption efficiency Qa, for example, gives the fraction of radiant energy
incident on the sphere that is absorbed by the sphere. The term “energy incident on the
sphere,” means the energy of the incident plane wave passing through an area equal to
the cross-sectional (projected, or “shadow”) area of the sphere, As = πρ2. Likewise, the
total scattering efficiency Qb gives the fraction of incident energy that is scattered into all
directions. Other efficiencies can be defined: Qc = Qa + Qb for total attenuation, Qbb for
backscattering, and so on.

Mie solutions may also be presented in terms of absorption and scattering cross sections.
The physical interpretation of these cross sections is simple. The absorption cross section σa,
for example, is the cross sectional area of the incident plane wave that has energy equal to the
energy absorbed by the sphere. The absorption and scattering cross sections are therefore
related to the corresponding efficiencies by the geometrical cross section of the sphere. Thus

σa = QaAs = Qaπρ
2 (m2) .

Likewise, σb = QbAs, and so on for σc, σbb, etc.
For the record, these cross sections are obtained within the Mie code from the an and bn

functions of Eq.(align7):

σb = &
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
σc = &

2π

k2

∞∑
n=1

(2n+ 1)<(an + bn)

where <(...) denotes the real part of the argument; 2π/k2 is equivalent to λ2/(2πn2
m).

The cross sections obtained from Mie theory are for a single particle and have units of m2

per particle, for the given particle properties. In oceanography, we are usually interested in
a water body containing a huge number of particles per cubic meter. If there are N particles
per cubic meter corresponding to particle radius ρ (for given other conditions of indices
of refraction and wavelength, which determine the size parameter x and relative index of
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refraction m), then the oceanographers’ scattering coefficient corresponding to a collection
of identical particles is

b(ρ) = N (ρ)σb(ρ) (m−1)

Now, of course, the ocean does not contain just one size and type of particle. The
range of particle sizes is described by the particle number size distribution PSD(ρ), where
PSD(ρ) is a function such that the number of particles with radii between ρ and ρ + dρ
is PSD(ρ)dρ. The units of PSD are particles per cubic meter per size interval, which is
usually written as 1/(m3µm) because particle sizes are usually measured in micrometers.
Particle size distributions are often modeled as a power law of the form PSD(ρ) = Kρ−s,
where K sets the scale and s is in the range of 4 or 5. So the total scattering coefficient due
to all particles of a given type is then

b(all sizes) =

∫ ∞
0

σb(ρ)PSD(ρ) dρ .

In practice, the integration over all ρ will be approximated as a summation from some
minimum size ρmin to some maximum size ρmax for which the σb PSD term makes a significant
contribution to the summation.

There will also be different types of particles for a given size ρ, which gives different
x and m parameters in the Mie equations, hence different cross sections for the different
particle types: σb(ρ, i), where i = 1, ...,M labels the type of particle (cyanobacteria, quartz
sand, etc.). Each particle type can have its own size distribution, PSD(ρ, i). Then the total
scattering coefficient for all sizes of all particle types is

b(all sizes, all types) =
M∑
i=1

ρmax∑
j=ρmin

σb(ρj, i)PSD(ρj, i) ∆ρj . (10)

Thus there must be many evaluations of the Mie equations to obtain the cross sections for
a realistic range of particle types and size bins. Keep in mind that if Mie theory is used
to obtain the cross sections, then it is being assumed that the particles are homogeneous
spheres, which is almost never the case in the ocean. However, Eq. (equation10) shows how
Mie calculations can be used to compute the quantities used in optical oceanography if the
particles can be approximated as homogeneous spheres.

As a final comment on Mie theory, Mie codes often output something called the “radar
cross section.” This is the hypothetical area required to intercept incident power onto the
particle such that if the total intercepted power were re-radiated isotropically with a scat-
tering amplitude equal to the amplitude for exact backscattering (at 180 deg), the power
actually observed at the receiver is produced. Do not confuse this quantity with the backscat-
ter cross section σbb, which corresponds to scattering over the backward hemisphere of the
phase function without any assumption of isotropic scattering pinned to the phase function
value at 180 deg. Most Mie codes unfortunately call the radar cross section the backscatter
cross section in their output files, which leads to much confusion. See Bohren and Huffman
(1983) Section 4.6 for further discussion.

The next page shows example output from a Mie computer code.
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