
This page shows examples computed from the equations discussed on the preceding Mie
Theory Overview page. These examples were generated with the IDL version of the Bohren
and Huffman Mie code (BHMIE) downloaded from SCATTERLIB.

For ease of reference, recall the physical inputs to the Mie calculations:

• The radius ρ of the homogeneous sphere

• The complex index of refraction of the sphere, ms = ns + iks, where ns is the real
index of refraction, and ks is the complex index of refraction. The complex index is
related to the absorption coefficient as of the sphere material by as(λ) = 4πks(λ)/λ,
where λ is the wavelength in vacuo corresponding to the frequency ν of the incident
electromagnetic wave.

• The real index of refraction nm of the non-absorbing, homogeneous, infinite medium

• The wavelength in vacuo, λ, of the incident plane electromagnetic wave. This corre-
sponds to a frequency ν = c/λ and to a wavelength in the medium of λm = λ/nm

These inputs are recast into the quantities actually used in the Mie calculations:

• The size parameter

x =
2πρnm
λ

=
2πρ

λm

• The complex index of the particle relative to the medium,

m =
ns
nm

+ i
ks
nm

Most Mie codes then return the following outputs:

• The unnormalized complex amplitude matrix elements S1 and S2 as a function of
scattering angle, 0 ≤ ψ ≤ 180 deg, from which can be computed:

– The scattering phase function for incident perpendicular polarization to scattered
perpendicular polarization, I⊥ = |S1|2

– The scattering phase function for incident parallel polarization to scattered par-
allel polarization, I‖ = |S2|2

– The scattering phase function for unpolarized light, β̃ = 1
2
(|S1|2 + |S2|2)

• Various efficiencies

– The attenuation efficiency Qc

– The scattering efficiency Qb

– The absorption efficiency Qa = Qc −Qb

• or the equivalent cross sections
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– The attenuation cross section σc

– The scattering ecross section σb

– The absorption efficiency σa = σc − σb

• The average cosine of the scattering angle, g

The radar cross section may also be returned, but it is not of interest to oceanographers.

Example 1: Bohren and Huffman Fig. 4.9(b)

As a first example, let us reproduce one of the figures from Bohren and Huffman (1983).
They considered a water droplet in air with ρ = 0.263 µm, an index of refraction of the
particle relative to the air of m = 1.33 + i10−8, and a wavelength of λ = 550 nm. These
values give a size parameter of x = 3. Figure figure1 shows the curves for I⊥ = |S1|2,
I‖ = |S2|2, and β̃ = 1

2
(I⊥ + I‖). The I⊥ and I‖ curves exactly reproduce the curves in Fig.

4.9(b) of Bohren and Huffman. This is a check that the Mie code is working correctly.
The I⊥ and I‖ curves can be viewed as unnormalized phase functions for scattering of

incident light that is polarized perpendicular (parallel) to the scattering plane into light that
is polarized perpendicular (parallel) to the scattering plane. The red curve shows the phase
function for scattering of unpolarized incident light into a sensor that is not polarization
sensitive. This is the phase function usually used by oceanographers. Recall, however, the
warning of the previous page about Mie codes outputting unnormalized amplitude matrix
elements. Integrating the red curve of Fig figure1 gives

2π

∫ π

0

β̃(ψ) sin(ψ) dψ = 51.37 .

Thus the red curve in the figure must be divided by 51.37 to obtain a properly normalized
phase function that could be used, for example, in HydroLight.

The figure also shows the scattering, absorption, and attenuation efficiencies, and the
mean cosine of the scattering angle. The scattering efficiency Qs is 1.753, which means that
the particle is scattering more than would be expected from its geometric cross section πρ2.
We will return to this peculiar result below.

Example 2: Oceanic Particles

Let us next consider a particle that might be an approximation to a small spherical phyto-
plankton like Synechococcus. For physical parameters we use

• ρ = 0.5 µm

• ns = 1.37

• ks = 0.015 (corresponding to as = 3.77× 105 m−1)

• nm = 1.33
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Figure 1: Figure 4.9(b) from Bohren and Huffman (1983), with additional information.
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• λ = 500 nm

(Remember that the absorption coefficient as is the absorption coefficient of the plankton
material. These values are typically in the range of 104-105 m−1 at visible wavelengths.)
Figure figure2 shows the resulting normalized phase function for unpolarized light.

Figure 2: The normalized phase function for unpolarized light for the simulated phytoplank-
ton with ρ = 0.5 µm.

As seen in this figure, a single particle scatters light in a very complex angular pattern.
The peaks and valleys of the phase function result from constructive and destructive inter-
ference between the incident electric field and the field that arises in the region of the sphere.
You can think of this as being the 3D version of the diffraction pattern of bright and dark
lines seen when a plane wave is incident onto a slit in screen (see, for example, Fig. 1 on the
Nature of Light page). You can also think of this pattern as resulting from the sum of the
infinite series of multipole modes of the scattered field, that is, the sum of a dipole electric
field, plus a quadrapole field, plus an octopole field, plus....

Recall from Eq. (6) of the Mie Theory Overview page that the amplitude matrix elements
are given by infinite sums of particle-dependent coefficients (the an and bn of Eq. (7)) times
angle-dependent functions πn(ψ) and τn(ψ) given by Eq. (8) of that page. Figure figure3
shows the first 8 of the angle functions. The most important feature to note in these curves
is that both πn and τn are always positive as ψ → 0. Therefore, as more and more terms
are added in the amplitude matrix sums, the small-angle amplitudes (hence the associated
phase function) become more and more peaked. The oscillations at larger scattering angles
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combine to create the peaks and valleys of seen in the phase functions of Figs. figure1 and
figure2 and in figure5 below.

Figure 3: The first 8 of the Mie angular-dependent functions πn and τn defined by Eq. (8)
of the Mie Theory Overview page.

The shapes of the πn and τn functions trace back to mathematical functions called spher-
ical harmonics, which are buried deep inside the Mie equations. Expanding a 3D function
of (θ, φ) as a sum of spherical harmonics is analogous to expanding a 1D function as a sum
of sines and cosines (a Fourier series). Figure figure4 shows a graphical representation of
the first few spherical harmonics. (If you think these patterns looks suspiciously like the
shapes of the orbitals seen in Fig. 1 of the Physics of Absorption, you would not be wrong.
The underlying physics is different—quantum mechanics vs light scattering—but the same
mathematical functions crop up on both cases.)

The locations of the peaks and valleys of the scattering pattern depend on the parti-
cle’s physical properties—its size, relative index of refraction, and the wavelength. Fig-
ure figure5 shows three normalized phase functions for the same particle type (a simulated
phytoplankton) as in Fig. figure2, but for particles of radii ρ = 0.5, 1.0, 2.0 mum. These
particles have size parameters of x = 8.42, 16.84, and 33.68, respectively; each particle has
m = 1.02239 + i0.01119. It is seen that the peaks and valleys of the phase functions are
at different scattering angles. In general, the larger the size parameter x, the more features
there are in the phase function. Note also that as the particle size increases, the phase
function becomes more peaked at small scattering angles. The scattering cross section in-
creases rapidly with particle size; that is, a large particle scatters more strongly than a small
particle.
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Figure 4: Graphical representation of the first few spherical harmonics. The blue color shows
where the function is positive, and the yellow is negative values; the distance from the origin
represents the magnitude for a given (θ, φ) direction. Creative Commons image created by
Inigo Quilez, downloaded from Wikipedia–Spherical Harmonics.
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Figure 5: The normalized phase functions for unpolarized light for simulated phytoplankton
with ρ = 0.5, 1.0, 2.0 mum. The black curve is the total phase function for a particular size
distribution of these three particle sizes, as discussed in the text.
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In the ocean, there are particles of many sizes and many indices of refraction, all occurring
with different numbers of particles per cubic meter. When the phase functions for many
different particle sizes and compositions are added together, the peaks and valleys of the
individual phase functions tend to cancel out, leaving a much smoother phase function for
the mixture of particles corresponding to what is measured on a sample of ocean water.

To combine phase functions for different particle types or sizes, remember that IOPs,
including the volume scattering function, are additive. Thus the total phase function for the
three particles used to generate Fig. figure5 would be combined as follows. Let Ni, i = 1, 2, 3
be the number density (particles per cubic meter) of each size of particle. The particle
scattering cross sections obtained from Mie theory are σsi; the values are shown in Fig.
figure5. Then

V SFtotal = & V SF1 + V SF2 + V SF3 btotal β̃total = & b1 β̃1 + b2 β̃2 + b3 β̃3 β̃total = &
N1 σs1 β̃1 +N2 σs2 β̃2 +N3 σs3 β̃3
N1 σs1 +N2 σs2 +N3 σs3

Suppose, just for the sake of illustration, that there are one-fifth as many particles of radius
ρ = 1 µm as there are particles of radius ρ = 0.5 µm, and one-fifth as many of radius 2 as
of radius 1. Then the three individual-particle phase functions seen in the red, green, and
blue curves of Fig. figure5 would combine to give the total phase function shown by the
black curve in the figure. This shows that the highly peaked features of the single-particle
phase functions are starting to average out to leave a smoother total phase function. When
the same process is carried out for many sizes of particles, say from 0.1 to 100 µm, and for
many different kinds of particles (living phytoplankton of various types, detritus, sediment
particles, etc.), a much smoother, typical ocean phase function can result.

Adding the results for individual particles together in the manner just shown assumes
that each scattering particle is in the “far field” of its neighbors, so that the scattered field
set up by one particle is not affected by nearby particles. This means that the particles
should be separated by many wavelengths of the light. If there are, say, 1012 particles per
cubic meter (a typical value for small phytoplankton) and the wavelength is 500 nm, then
each particles is separated by 200 wavelengths, on average. This more than satisfied the
far-field approximation.

Note, however, that the relative contributions of different particles is highly dependent
not just on particle size and index of refraction, but on how many particles there are. Very
small particles generally occur in high numbers, but they are individually weak scatterers
and thus may contribute little to the total because of their small cross sections. Very large
particles are strong scatterers, but they occur in very small numbers, and thus also may
contribute little because of their small numbers. It is often the medium-sized particles, say
radii from 0.5 to 5 µm, that contribute the bulk of the total scattering in typical waters.

The Extinction Paradox

Recall from Fig. figure1 that the scattering efficiency was Qs = 1.753 for a small water
droplet in air at 550 nm. This says that the particle is scattering more light than just the
light that encounters the cross-sectional area of the particle. This seems counterintuitive
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from everyday experience. If light hits a baseball, some will be absorbed and some will be
reflected (scattered) by the ball, but light that misses the ball travels onward—or so it seems.

Figure figure6 shows the absorption (Qa), scattering (Qb), and extinction (Qc = Qa+Qb)
efficiencies for highly absorbing soot particles, which are generated by incomplete combustion
and are a common component of air pollution caused by coal-fired power plants, diesel
exhaust, or forest fires. Soot has a real index of refraction of about 1.5, and an imaginary
index of about 0.05 (Adler et al. (2010)). The wavelength of the incident light is 532 nm.

For small size parameters, starting from x = 0, the scattering curve rises rapidly and
then displays broad but damped oscillations with increasing x. These oscillations are caused
by constructive and destructive interference between the incident and scattered light waves.
Thus very small particles can be very efficient scatterers if their size matches the wavelength
of the light in just the right way. For these soot particles in air, the maximum in scattering
efficiency near x = 4 corresponds to a particle radius of about 340 nm. There is also a fine
“ripple structure,” which requires a more complicated explanation (see Bohren and Huffman
(1983)). Thus these very small particles are scattering much more energy than would be
expected from their physical cross section size. This behavior of large extinction for small x
is seen in measurements of soot extinction efficiency in Fig. figure7. The agreement between
measurements and Mie theory is surprisingly good given that real soot particles are far from
spherical.

Figure 6: Efficiencies as a function of the size parameter for highly absorbing soot particles
with m = 1.549 + i0.044. Compare with panel A of Fig. figure7.
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Figure 7: Measurements and Mie predictions of the extinction efficiency of diesel-fuel soot
particles. Panel A corresponds to the Mie simulations of Fig. figure6. (WSM refers to
water-soluble material and OSM is organic soluble material. Figure 2 from Adler et al.
(2010).)
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Figure figure6 shows that, for soot in air, as x becomes large, Qa is close to 1, but so is Qb,
so Qc is close to 2. These values remain similar as x continues to increase. For x = 10, 000
(a particle size of ρ = 0.85 mm for λ = 532 nm), Qa = 0.9085, Qb = 1.096, and Qc = 2.004.
The Qa value makes sense: the soot is highly, but not totally absorbing, so a 91% absorption
efficiency is plausible. However, if the light incident onto the particle is almost all absorbed,
then it would seem that the particle should not be scattering as much or more light as it
absorbs.

Geometric optics is a model of light propagation using rays and is often used to model light
scattering by objects that are much, much larger than the wavelength of light. Geometric
optics corresponds to large size parameters x in Mie theory. Geometric optics predicts that
the maximum of Qc should be 1, that is, a particle can absorb and/or scatter at most the
energy that is incident onto the particle. The asymptotic approach of Qc to 2 is known as the
“extinction paradox.” This very general result is called a paradox because geometric optics
predicts Qc = 1. An equivalent statement is that the asymptotic value of the extinction
cross section σc is twice the particle’s geometric cross section πρ2.

The standard explanation for the extinction paradox is that the “extra” scattering is due
to diffraction by the particle. The electric field of light passing near to, but not intersecting,
the particle is perturbed by the presence of the particle, which causes the light to change
direction. Diffraction is not easily observed for everyday objects like baseballs because the
angle of deviation of the diffracted light from the direction of the incident light is extremely
small. Indeed, it was Newton’s inability to observe the bending of light around large objects,
and their apparently sharp shadow edges, that led him to conclude that light consisted of
particles and not waves. Nevertheless, diffraction occurs for all sizes of objects, and any
deviation, no matter how small, of light from its initial direction counts as scattering and
contributes to Qb. However, the diffraction explanation can be shown to be incomplete,
and papers are still being written about the fundamental cause of the Qc = 2 limit (e.g.,
Berg et al. (2011)). The full explanation requires a deep understanding of how the incident
and scattered waves interact within and surrounding the particle. Regardless of the full
explanation, the effect is very real and occurs for all particles.

Another example of the extinction paradox is seen in Fig. figure8. These simulations
are for quartz particles in water. Quartz has a real index of refraction of about 1.54 and is
modeled here as completely non-absorbing. The wavelength is taken to be 500 nm. Since the
particles are non-absorbing, the absorption efficiency is identically 0, and the total extinction
is due to scattering (Qc = Qb). Both the interference structure and the ripple structure are
clearly seen. The ripple structure is much less noticeable for the soot particles in Fig.
figure6 because the ripples are damped out by absorption. The quartz particles also display
an oscillating, asymptotic approach of Qc to a value of 2, just as do the soot particles.

Figure figure9 shows the efficiencies for the phytoplankton model used to generate the
phase function of Fig. figure2. For this relative index of refraction, the scattering efficiency
shows only one broad maximum near x = 50, which corresponds to a particle radius of about
ρ = 3 µm. By x = 150, the extinction efficiency Qc = 2.02, so within 1% of its asymptotic
value.

A fine way to spend a rainy Saturday is to download a Mie code and do a few thousand
runs to see the effects of real and imaginary indices of refraction, particle size, and wavelength
on the various phase functions and efficiencies. However, regarding the wavelength effect,
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Figure 8: Efficiencies as a function of the size parameter for non-absorbing quartz particles
in water at 500 nm.
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Figure 9: Efficiencies as a function of the size parameter x for the phytoplankton model used
to generate the phase function of Fig. figure2.
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keep in mind that as wavelength changes so do the indices of refraction of the particle and
medium. Suppose that, for a given particle radius ρ you want to generate a figure like
Figs. figure9 and figure8, but showing the efficiencies as a function of wavelength. That
can be done, but you have to change the particle and medium indices of refraction for each
wavelength. The absorption coefficient of water changes from aw ≈ 0.015 m−1 at 440 nm
to 0.65 m−1 at 700 nm. If modeling a water droplet in air, this wavelength dependence
of aw determines the water imaginary index of refraction via ks(λ) = aw(λ)λ/(4π), and
thus affects the size parameter x(λ) = 2πρ ks(λ)nm(λ)/λ = ρ aw(λ)nm(λ)/2. If modeling
a phytoplankton in water, the needed phytoplankton ks(λ) might be constructed from a
phytoplankton chlorophyll-specific absorption spectrum, and so on.

Finally, remember that Mie theory is valid only for homogeneous spherical particles,
even though it often, but not always, gives reasonable approximate results for non-spherical
particles.

14


