
This page now reverts to the customary k for the real wavenumber, k = 2π/λ. The
preceding page discussed wave propagation for a sinusoidal wave with given spatial (k) and
temporal (ω) frequencies. In that case, there is a single speed of propagation, the phase speed
vp = ω/k. However a true sinusoidal wave cannot exist in nature because real waves must
start and stop at finite times. This in turn means that the finite length “wave packet” must
contain more than one frequency. (This is easily seen using Fourier transforms. The Fourier
transform of a finite-length spatial function contains all frequencies.) It is then possible that
the overall wave packet or group of waves propagates at a different speed, called the group
speed, than the phase speeds of the individual waves comprising the wave packet. This
results in some waves “outrunning” others, and the original group of waves spreads out, or
disperses.

This page examines dispersion in detail. The basic phenomenon of dispersion and differ-
ent phase and group speeds is illustrated first by the sum of just two sinusoids. This is then
generalized to wave packets containing all frequencies. This allows for an understanding of
“normal” and “anomalous” dispersion. A specific example of phase and group speeds is then
given for light wave propagation in pure water, which leads to a surprise.

Phase and Group Speeds for a Two-wave System

Let ψ be the magnitude of a propagating disturbance. ψ might be the electric field of a light
wave, or the height of the sea surface relative to the mean sea surface, or the fluctuating
pressure of a sound wave. Suppose that ψ is composed of two cosines of equal amplitudes
but differing wave numbers and temporal frequencies. That is to say

ψ(x, t) = A cos(k1x− ω1t) + A cos(k2x− ω2t) . (1)

The trigonometric identity

cosα + cos β = 2 cos

(
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2

)
cos

(
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2

)
can be used to rewrite ψ as

ψ(x, t) = 2A cos[1
2
(∆k x−∆ω t)] cos(k x− ω t) ,

where ∆k = k2 − k1, ∆ω = ω2 − ω1, k = 1
2
(k1 + k2), and ω = 1

2
(ω1 + ω2). This can be

rewritten as
ψ(x, t) = 2A cos[1

2
∆k(x− ∆ω

∆k
t)] cos[k(x− ω

k
t)]

Recalling that a function of the form f [s(x− vt)] propagates with speed v, we see that the
two cosines describe waves that propagate with two speeds,

ψ(x, t) = 2A cos[1
2
∆k(x− vg t)] cos[k(x− vp t)] ,

where we identify the two speeds as

vp = &
ω

k
, and (2)

vg = &
∆ω

∆k
. (3)
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vp has the form of the phase speed of the previous section, computed now from the average
wave number and average angular frequency. vg is called the group speed and is computed
as the ratio of the differences in the two wave numbers and frequencies.

The implications of these equations are illustrated in Figs. figure1–figure3. In the first
figure the wave numbers and frequencies are chosen so that both the individual waves (the
red curves) and the group envelope (the blue dots) propagate in the same direction and
vp > vg. In the second figure the wave numbers and frequencies are chosen so that both
the waves and the group envelope propagate in the same direction but with vp < vg. In the
third figure the wave numbers and frequencies are chosen so that the waves propagate in one
direction but the group envelope propagates in the opposite direction.

Dispersion Relations

We have seen that the phase speed is the ratio of angular frequency to wave number. It is
easy to see from the previous example that if the two waves have nearly the same frequencies
and wave numbers that ∆ω/∆k is a good approximation to the derivative dω/dk. In the
general development below, the group speed will be defined as

vg =
dω

dk
. (4)

Clearly, knowing how ω depends on k allows the computation of both the phase speed and
the group speed. This relation is known as a dispersion relation.

Do the situations illustrated in Figs. figure1–figure3 actually occur in nature? Indeed
they do. Consider waves propagating on a water surface. The dispersion relation for small
amplitude, free-surface water waves is (e.g., Apel (1987))

ω2 =

(
gk +

σ

ρ
k3

)
tanh(kh) , (5)

where g = 9.8 m s−2 is the acceleration of gravity, σ = 0.074 N m−1 is the surface tension
of water, ρ = 1000 kg m−3 is the density of water, and h is the depth of the water. [The
assumption that the waves have a small amplitude allows the equations of fluid motion to
be linearized, which results in the dispersion relation shown here.]

This dispersion relation has three limiting cases of interest.
For waves whose wavelengths are small compared to the water depth, so-called deep-water

waves, tanh(kh) = tanh(2πh/λ) ≈ 1. Then

ω2 =

(
gk +

σ

ρ
k3

)
.

For long-wavelength “gravity waves”, k >> k3 and the surface-tension term is negligible
(i.e., surface tension is a negligible restoring force compared to gravity). Then

ω2 ≈ gk .
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Figure 1: Illustration of phase and group speeds for the two-wave system giving vp > vg. The
blue dots track the crest of the wave envelope. The red dots track the crest of a particular
wave phase that forms at the rear of an envelope and moves forward, growing in amplitude
and eventually passing the crest of the envelope, after which it decreases in amplitude as it
propagates further and eventually dies out. The parameter values used in Eq. (likesection1)
are A = 1, ω1 = 2π, ω2 = 1.1ω1, and k1 = 2π, k2 = 1.2k1. The resulting phase and group
speeds are vp = 0.9545 and vg = 0.50, so both waves propagate to the right in the figure but
the individual waves outrun the wave packet.
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Figure 2: Illustration of phase and group speeds for two waves giving vp < vg. As before, the
blue dots track the crest of the wave envelope. The red dots track the crest of a particular
wave phase that forms at the front of an envelope. Although the red dot moves to the right
(vp > 0), from the viewpoint of the wave packet, the wave forms at the front of the packet
and moves to the rear of the packet, where it dies out. The parameter values used in Eq.
(likesection1) are A = 1, ω1 = 4π, ω2 = 1.15ω1, and k1 = 4π, k2 = 1.1k1. The resulting phase
and group speeds are vp = 1.024 and vg = 1.50, so now the individual waves propagate
slower than the wave packet.
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Figure 3: Illustration of phase and group speeds for two waves giving vp > 0 and vg < 0.
The blue dots track the crest of the wave envelope and the red dots track the crest of
a particular wave phase. The parameter values used in Eq. (likesection1) are A = 1,
ω1 = 2π, ω2 = 0.9ω1, and k1 = 2π, k2 = 1.2k1. The resulting phase and group speeds are
vp = 0.8636 and vg = −0.50. Now the individual waves propagate to the right, but the group
envelope propagates to the left.

From this we can compute vp = ω/k =
√
g/k and vg = dω/dk = 1

2

√
g/k. Thus the group

speed for deep-water gravity waves is one-half the phase speed. For very short-wavelength
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capillary waves, k is large and the surface-tension term dominates. Then

ω2 ≈ σ

ρ
k3 ,

from which we find vp =
√
σk/ρ and vg = 3

2

√
σk/ρ. Thus the group speed is 3

2
times the

phase speed. For wavelengths that are large compared to the water depth, so-called shallow-
water waves, tanh kh ≈ kh and, again, the surface tension term is negligible. The dispersion
relation is then

ω2 ≈ ghk2 ,

from which we get vp = vg =
√
gh. Thus for shallow-water waves the phase and group speeds

are equal.
The deep-water case of vg = 1

2
vp is qualitatively like Fig. figure1. The individual waves

travel faster than the group envelope. The individual waves appear to form at the back of
the envelope, move forward to the crest of the envelope while growing in amplitude, and
then move past the crest of the envelope and decrease in amplitude until they disappear
at the front of the group. I have watched this happen many times while sea kayaking on
a nearly calm water water body. Then a ship goes by some distance away and leaves a
large wake composed of a string of smaller waves. As the wake reaches my kayak, smaller
waves form at the rear of the wake group and propagate to the front of the wake, where
they disappear. I never cease to be amazed as I watch waves appear from nowhere, grow in
size as they propagate forward, and then simply disappear when they reach the front of the
wake, exactly as predicted by the deep-water dispersion formula.

The capillary-wave case of vg = 3
2
vp is similar to Fig. figure2. The very short-wavelength

capillary waves form at the front of the wave packet and propagate to the rear, or rather, the
wave packet envelope outruns them. An example of a positive phase speed and a negative
group speed will be seen below.

The General Development

This section merely outlines the general development of wave propagation in dispersive me-
dia; a more complete discussion is given in Section 7.3 of Jackson (1962) and in Sections 16-4
and 16-5 of Towne (1967). We have learned that a single sinusoidal wave of given frequency
ω and wave number k satisfies the wave equation and has a wave propagation speed of ω/k.
Because the wave equation is linear, a linear combination of sinusoids also satisfies the wave
equation. Thus a general wave function ψ(x, t) can be built up as a sum of sinusoids of
various amplitudes, frequencies, and wave numbers. Rather than deal with real sinusoids
as seen in Eq. (likesection1), it is convenient (indeed, almost necessary) to use the complex
representation of propagating waves. We thus write

ψ̃(x, t) =

∫ ∞
−∞

Ã(k) exp i[kx− ω(k)t]dk , (6)

where the tilde reminds us that the quantity is a complex function whose real value must be
taken at the end of the development. Positive and negative k values represent waves with
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the same physical wave number but traveling in opposite directions. This equation thus adds
up waves of any amplitude and wavenumber to create a general waveform. Note that the
angular frequency is a function of the wave number according to the dispersion relation for
the medium under study. (It is also noted that at t = 0 this equation is, to within a factor

of 2π, precisely the inverse Fourier transform of Ã(k), although that connection will not be
used here.)

The dispersion relation can be expanded in a power series about any value of ko:

ω(k) = ωo +
dω

dk

∣∣∣∣
o

(k − ko) + higher order terms . (7)

If the distribution of Ã(k) values is peaked around the value ko, or if the dependence of ω on
k is weak, then the higher order terms can be neglected. Use of this approximation in Eq.
(likesection6) eventually leads to the identification of vg = dω/dk as shown in (likesection4)
as the speed at which a wave pulse or packet travels. But note: as will be seen, neglecting
the higher order terms in this expansion in not always a good approximation.

For light waves in a dielectric medium like water or glass the dispersion relation is

ω(k) =
c k

n(k)
, (8)

where c is the speed of light in a vacuum and n(k) is the real index of refraction expressed
as a function of k. This gives the phase speed as

vp =
ω

k
=

c

n(k)
. (9)

This make clear that “the speed of light in a medium” as presented in freshman physics is
the phase speed. The corresponding group speed is

vg =
dω

dk
=

d

dk

[
ck

n(k)

]
=

c

n(k)
− c k

n(k)2

dn(k)

dk
.

It is more convenient to view the index of refraction as a function of frequency than of wave
number, so using

dn

dk
=
dn

dω

dω

dk
=

(
c

n
− c k

n2

)
dn

dω

in the previous equation leads to

vg =
c

n(ω) + ω dn(ω)
dω

.

This is the form usually seen in physics texts. The corresponding equation with n viewed as
a function of wavelength (as oceanographers prefer to do) is

vg =
c

n(λ)

(
1− λ

n(λ)

dn(λ)

dλ

)
= vp

(
1− λ

n(λ)

dn(λ)

dλ

)
. (10)
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Note that if n is independent of wavelength, vg = vp. This is approximately the case for
water at wavelengths near 1000 nm, as seen in the top panel of Fig. figure4. If n = 1,
vg = vp = c. The only “substance” with n = 1 is a vacuum.

It is very instructive to examine these phase and group speeds when applied to the
propagation of light in pure water. The top panel of Fig. figure4 shows the real index of
refraction of pure water for λ = 0.1–10 µm. The bottom panel shows the corresponding
phase and group speeds computed from Eqs. (likesection9) and (likesection10), respectively.
There are a number of features to note in these curves. Below 72 nm, the real index of
refraction is less than 1, which makes the phase speed vp = c/n greather than c. This is
not a violation of special relativity. The “universal speed limit” of c applies to material
objects and the speed at which energy or signals can propagate; phase speeds can have any
value. Between about 200 and 2000 nm, which includes the region of interest to optical
oceanographers, n(λ) decreases smoothly with increasing wavelength. The group speed is
a bit greater than the phase speed, and both are about three-fourths the speed of light in
a vacuum. However, there are regions where the group speed displays a seemingly bizarre
behavior—it can be greater than the speed of light, and it can be negative, and there are
rapid fluctuations between these two extremes. The conventional wisdom of undergraduate
physics says that energy propagates at the group speed, which therefore should not exceed
the speed of light in vacuo.

What is happening here is that the concept of the group speed of a wave packet has
broken down. Note in the figure that the large fluctuations in vg occur near the wavelengths
where n(λ) is changing rapidly. Rapid changes in the index of refraction give rapid changes
in the dispersion relation of Eq. likesection8. This in turn means that the higher order terms
in the expansion of ω(k) seen in Eq. (likesection7) cannot be neglected. When that is the
case, the simple concept of a group speed as defined by Eq. (likesection4) is inadequate to
describe the propagation of the wave pulse envelope. As the venerable Jackson (1962) points
out (on his page 211), a value of vg > c “...is no cause for alarm that our ideas of special
relativity are here violated; group velocity is no longer a meaningful concept.” and “The
behavior of the pulse is much more involved.” Towne (1967) (Section 6-5) and Bohren and
Huffman (1983) (Section 9.1.3) discuss the physical processes leading to n < 1. It is true for
all substances that at high frequencies (short wavelengths) n approaches 1 from values less
than 1, just as is seen for water in Fig. figure4.
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Figure 4: Phase and group speeds for water. The top panel shows the real index of refraction
of pure water (data of Segelstein (1981) redrawn from Fig. 1 of the water IOPs page). The
bottom panel shows the phase speed vp computed using Eq. (likesection9) (blue curve) and
and the group speed vg computed from Eq. (likesection10) (red curve). The black dashed
line is the speed of light. The region of interest to optical oceanography, 300-1000 nm, is
shaded in blue.
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