
When the real index of refraction decreases with increasing wavelength (i.e., dn/dλ < 0,
or dn/dω > 0) the associated dispersion is called “normal” dispersion. This is the situation
for water or glass at visible wavelengths. According to Snell’s law, red light will deviate less
than blue when passing from air into a water drop. The result is that the red band of color
(longer wavelengths) is at the outside of a rainbow, and the violet (shorter wavelengths) is
at the inside. Regions of the spectrum where n increases with wavelength (dn/dλ > 0, or
dn/dω < 0) would give the reverse order of wavelengths: shorter wavelengths would be at
the outside of the rainbow and longer wavelengths at the inside. This reversal of “colors”
from that seen in normal life at visible wavelengths is called “anomalous dispersion.” There
is really nothing normal or abnormal about either situation, you simply get a particular
order of refracted wavelengths depending on the sign of dn/dλ.

Anomalous dispersion occurs near strong absorption bands, which is how it enters into
the understanding of the optical properties of phytoplankton, e.g. in papers by Morel and
Bricaud (1981), Morel and Bricaud (1981b), Bricaud et al. (1983), Bricaud and Morel
(1986), and Stramski et al. (1986). Because of this important application, anomalous
dispersion warrants discussion. To understand anomalous dispersion, we must construct a
model for light propagation in a dielectric. A simple, but very fruitful and still useful, model
was constructed by H. A. Lorentz around 1900. [This is the same Lorentz of the Lorentz
transformation in special relativity and of many other results that still bear his name. He
shared the 1902 Nobel Prize with Zeeman for their discovery and explanation of the Zeeman
effect, which is the splitting of some spectral lines in the presence of a magnetic field. His
model of light propagation in dielectrics grew out of his efforts to understand the physical
basis for the index of refraction. His work was one of the first couplings of Maxwell’s equations
with the new “electron theory of matter” after the discovery of the electron in 1897.] I will
merely outline the development of the Lorentz model—the details are a standard topic in
texts on classical electrodynamics; see, for example, Section 8.4.2 of Griffiths (1981). The
arguments are as follows.

Electrons in a dielectric are bound to specific molecules by electrostatic forces from the
nuclei. When an electromagnetic wave of frequency ω passes by, the oscillating electric field
causes the electrons to oscillate at the same frequency as the wave. However, the electrons
also have resonant or “natural” frequencies ωo. If the incident wave frequency is near to
resonate frequency, the light-molecule interaction is particularly strong.

Let y be the displacement of an electron of charge q and mass m from its equilibrium
position in the molecule. When the electron is pulled away from its equilibrium position at
y = 0 there is a binding or restoring force that pulls it back towards its equilibrium position:

Fbinding = −mω2
oy .

If the sign of the force pulling the electron away from equilibrium is taken to be the positive y
direction, then the binding force pulling it back is in the negative y direction. If the electron
is set in motion by a passing electromagnetic wave, it will oscillate forever unless there is
some damping force. That force is taken to be proportional to the speed of the oscillating
electron:

Fdamping = −mγdy
dt
,

where γ is a measure of the strength of the damping. The nature of the damping need not
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concern us here, but one mechanism is “radiation damping,” which arises because oscillating
(i.e., accelerated) charges radiate energy. The driving force is the electromagnetic field:

Fdriving = qEo cos(ωt) .

The total force on the electron is then

Ftotal = m
d2y

dt2
= Fbinding + Fdamping + Fdriving ,

which gives the equation

d2y

dt2
+ γ

dy

dt
+ ω2

oy =
q

m
Eo cos(ωt) .

This is the equation for a damped harmonic oscillator. Thus the electrons are modeled in
classical physics terms as though they are charged masses tied to molecules like a masses
on springs driven by an applied sinusoidal force. This equation is linear, so we can replace
the terms with complex representations, just as was done in the previous pages on wave
propagation:

d2ỹ

dt2
+ γ

dỹ

dt
+ ω2

o ỹ =
q

m
Eoe

−iωt .

In steady state conditions, the electron oscillates at the driving frequency:

ỹ(t) = ỹoe
−iωt .

Inserting this into the previous equation gives

ỹo =
q

m

1

(ω2
o − ω2)− iγω

Eo .

The dipole moment induced by the electric field is the product of the charge and the
distance from equilibrium:

p̃(t) = qỹ(t) =
q2

m

1

(ω2
o − ω2)− iγω

Eoe
−iωt .

If N is the number of electrons per cubic meter in the material, then the bulk polarization
is P̃ = Np̃. Moreover, there are many electrons in a molecule, each of which has its own
resonant frequency, denoted ωoj for the jth electron. Each electron contributes to the bulk
polarization, so we sum over all electrons to obtain

P̃ (t) =
Nq2

m

(∑
j

fj
(ω2

oj − ω2)− iγjω

)
Ẽ(t) ,

where fj is the number of electrons in each molecule with resonant frequency ωoj and damping
parameter γj.

Now recall from the previous page that the polarization vector was written as P = εoχE.
We now introduce a complex susceptibility χ and write the magnitudes as P̃ = εoχẼ. Recall
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also that the proportionality between the the displacement field D and the electric field E is
D = εE = εo(1+χ)E, so we now introduce a complex permittivity ε = εo(1+χ). Assembling
these pieces gives the Lorentz model for the permittivity:

ε = εo

(
1 +

Nq2

mεo

∑
j

fj
(ω2

oj − ω2)− iγjω

)
. (1)

We also recall from Eq. (15) of the plane waves page that the complex wave number was
written as

κ = ω
√
µε =

ωm

c
= κ′ + iκ′′ ,

where m is the complex index of refraction.
To simplify the math, let us assume that the χ term is small compared to 1, and that

µ = µo, so that we can write

κ = ω
√
µε = ω

√
µoεo

√
1 + χ ≈ ω

c
(1 +

1

2
χ) .

We now have

κ = κ′ + iκ′′ =
ω

c

(
1 +

Nq2

2mεo

∑
j

fj
(ω2

oj − ω2)− iγjω

)
. (2)

The summands in this equation are complex numbers of the form a/(b − ic), which can be
written as

a

b− ic
=

a

b− ic
b+ ic

b+ ic
=
ab+ iac

b2 + c2
=

ab

b2 + c2
+ i

ac

b2 + c2
.

This make it easy to extract the real and imaginary parts of Eq. (2). Recalling that the real
index of refraction is n = cκ′/ω and that the absorption coefficient is a = 2κ′′ gives

n ≈ 1 +
Nq2

2mεo

∑
j

fj(ω
2
oj − ω2)

(ω2
oj − ω2)2 + γ2jω

2
(3)

and

a ≈ Nq2ω2

mεoc

∑
j

fjγj
(ω2

oj − ω2)2 + γ2jω
2
. (4)

Equation (3) is what Lorentz was after: a model linking parameters of the substance, e.g.,
the density of electrons and their resonant frequencies, to the index of refraction. His de-
velopment also gave a model for the absorption coefficient with no additional effort. The
shape of the absorption curve defined by Eq. (4) is called a Lorentzian line shape. (There
are other line shapes that describe effects in gases such as pressure broadening and Doppler
shifting, but these do not concern oceanographers.)

The limiting cases of the Lorentz model are worth noting. At very low frequencies
(ω → 0), the permittivity seen in Eq. (1) becomes real and of the form ε = εo(1 + χ),
where χ is now a constant that depends on the particular substance. Water is a highly polar
molecule, which means that the bulk polarization P = εoχE achieves a large magnitude as
the water molecules align themselves with the slowly varying electric field. This gives a large
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value for χ and thus for ε. For water, ε ≈ 78 at low frequencies. This gives a real index of
refraction n =

√
ε ≈ 8.8, which is seen in Fig. (1) of the water IOPs page for λ & 10 cm

(ω . 2× 1010 rad s−1). For very high frequencies, ω →∞, the −ω2 term in the denominator
of Eq. (1) dominates because the applied frequency is greater than any resonant frequency
of the molecule. The permittivity then has the form ε ≈ εo(1−constant/ω2). Thus the index
of refraction approaches 1 from values less than 1 as ω →∞. This is true for any substance,
and is seen for water in Fig. (1) of the water IOPs page or Fig. 4 of the Dispersion page for
λ . 0.04 µm (ω & 5× 1016 rad s−1).

Figure figure1 shows the shapes of the functions for the index of refraction and the
absorption coefficient near a single resonant frequency. (That is to say, the n plot shows the
frequency-dependent function without the factor Nq2/2mεo and similarly for the a plot. A
value of γ = 0.4 was used.) For most of the frequency range, dn/dω > 0 (or dn/dλ < 0).
This is the case of “normal” dispersion. However, near the absorption line, the derivative
of n is reversed. This is the case of “anomalous dispersion.” In materials like water there
are many absorption lines due to electronic transitions (in the UV), vibrational modes (in
the near IR), and rotational modes (in the far IR and longer wavelengths). These lines are
often closely spaced, so they tend to overlap and blur out the features seen here for a single
isolated line, and n can remain above 1. However, near very strong absorption features, the
anomalous dispersion effect on the index of refraction can be seen. This is the case near
λ = 3 and 6 µm in Fig. 4 of the Dispersion page, where the shape of the n(λ) curve looks
qualitatively like that of the bottom panel of Fig. figure1. These features are due to strong
vibrational modes of the water molecule (O-H stretching modes). The structure of n(λ) in
at wavelengths from 0.115 to 0.180 µm is due to a number of electronic transitions. Note
also that as the frequency increases (the wavelength decreases), n approaches 1 from values
less than 1. This is the behavior seen in Fig. 4 of the Dispersion page.

To finish the discussion of the Lorentz model, it is first noted that the assumption that
χ was small compared to 1 is fairly good for gases. However, for liquids and solids, where
one molecule interacts with its neighbors and not just with the sinusoidal electric field,
the equations seen here require modification to allow for the “packing” of the molecules
in space. That leads to a result known as the Clausius-Mosotti, or the Lorentz-Lorenz,
equation. However, that modification does not change the basic idea developed here and
need not be pursued. Of course, real electrons are not attached to molecules as though they
were on springs. Somewhat surprisingly, a proper quantum mechanical treatment of the
problem leads to a result with exactly the same functional form as seen in Eq. (1). However,
the various terms are interpreted differently. The resonant frequencies are replaced by the
frequencies corresponding to the energy differences between the quantized energy levels in
the atom or molecule, and so on.

Kramers-Kronig Relations

At first glance it would seem that the real index of refraction and the absorption coefficient
should be unrelated optical properties of a material. As emphasized on the Physics of
Scattering page, spatial changes in the index are responsible for scattering. Absorption, on
the other hand, describes how energy is removed from a beam of light. However, as seen in
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Figure 1: Lorentz line shapes for the real index of refraction n and the absorption coefficient
a. These are plots of the summands in Eqs. (3) and (4) with the scale factors set to 1. Top
panel: n and a as functions of frequency; bottom panel: n and a as functions of wavelength.

the development of the Lorentz model, equations for both the index of refraction and the
absorption coefficient were obtained from the same analysis of how matter responds to a
sinusoidal electromagnetic wave, i.e. to light. The frequency-dependent functions for n(ω)
and a(ω) are very similar in form. This hints at a deeper connection between n(ω) and a(ω).

There is indeed a profound connection between the real index of refraction and the
absorption coefficient. These two quantities are in fact so closely related that if you know
one at all wavelengths, you can compute the other at all wavelengths. This relation was
discovered independently by R. de L. Kronig in 1926 and by H. A. Kramers in 1927. The
derivation of these equations is mathematically difficult and will not be give here; see Section
2.3.2 of Bohren and Huffman (1983) for a discussion.

Kramers-Kronig equations relate the real and imaginary parts of what are called analytic
functions. Without going into the details, there are many physical functions that satisfy the
requirements to be analytic. Examples relevant to optics are the frequency dependent com-
plex index of refraction m(ω) and related quantities such as the complex dielectric function
ε(ω) and the electric susceptibility χ(ω). When stated for the complex index of refraction
m(ω) = n(ω) + ik(ω), the Kramers-Kronig relations are (Eqs. 2.49 and 2.50 of Bohren and
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Huffman (1983))

n(ω)− 1 = &
2

π
℘

∫ ∞
0

Ω k(Ω)

Ω2 − ω2
dΩ (5)

k(ω) = &− 2ω

π
℘

∫ ∞
0

n(Ω)− 1

Ω2 − ω2
dΩ . (6)

If these equations do not scare you, they should. Note that as the frequency is integrated from
0 to∞, somewhere along the way the integration variable Ω will equal ω and the denominator
of the integrand will equal 0, while the numerator is non-zero. Thus the integrand becomes
infinite and the integral diverges. The ℘ symbol in front of the integrals indicates the Cauchy
principle value of the integrals. The Cauchy principle value is a way to assign a finite value
to some divergent integrals by computing a contour integral in the complex plane, “going
around” the singular point, and then taking suitable limits. [To learn how that is done, you
need to take a class in complex analysis, where you will learn about wonderful things like
poles, residues, branch points, contour integration of complex functions and, of course, how
to evaluate Cauchy principle value integrals. The standard text on this topic was published
by R. V. Churchill in 1948. It is still in press as an 8th edition Brown and Churchill (2009).]
The mathematical details are not needed for the present discussion, which will take as given
that the integrals can be evaluated.

The absorption coefficient is determined by the imaginary part of the index of refraction
via Eq. (20) of the plane waves page: a = 4πk/λ. Using this and the relation ω/c =
2π/λ allows the previous form of the Kramers-Kronig relations to be converted into the
corresponding form for n(ω) and a(ω):

n(ω)− 1 = &
c

π
℘

∫ ∞
0

a(Ω)

Ω2 − ω2
dΩ (7)

a(ω) = &− 4ω2

πc
℘

∫ ∞
0

n(Ω)− 1

Ω2 − ω2
dΩ . (8)

These equations are not just of academic interest. For example, it is often easier to measure
the absorption coefficient than the index of refraction. Then a measurement of absorption
allows the determination of the index of refraction via Eq. (likesection7). This is what
Zoloratev and Demin (1977) did, although they do not give the details of their numerical
calculations. Segelstein (1981) did essentially the same thing, although he did his numeri-
cal calculations using a fast Fourier transform technique derived from the Kramers-Kronig
relation (likesection5).

It is important to note that you cannot measure absorption at one frequency (or wave-
length) and then determine the index of refraction at that frequency. You have to measure
a(ω) over all frequencies, and then you can determine n(ω) over all frequencies by repeated
evaluations of Eq. (likesection7). In practice you never have measurements over all frequen-
cies, but you have to have measurements over a wide-enough range of frequencies to enable
an accurate approximate evaluation of the integrals. Of course, the integrations must be
performed numerically, which is not trivial because of the singularity at Ω = ω. There is
considerable literature on this; Fitzgerald (2020) gives a listing of Matlab code to carry out
the calculations.
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The purpose of this brief discussion of Kramer-Kronig relations is to show that absorption
and the real index of refraction are closely related. You might have a need for a material
with particular absorption and refractive properties. So you mix together just the right
combination of dyes to give the absorption spectrum you want. However, at that point you
have no freedom to someway define the real index of refraction; it has now been fixed by Eq.
(likesection7).

There is much more to be said about Kramers-Kronig relations, which occur throughout
physics and engineering. They are much more general than just the forms seen here for
optical variables. At the deepest level, they are a necessary and sufficient for causality,
which means that an effect cannot occur before its cause. This also means that no signal can
propagate faster than the speed of light in a vacuum. A necessary and sufficient condition
that a signal speed in a medium be less than the speed of light c is that the real and imaginary
parts of the medium’s refractive index satisfy Eqs. (likesection5) and (likesection6).
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