
The previous chapter on Radiative Transfer Theory developed the equations that govern
light propagation within a water body. This chapter now develops the equations that describe
how light is reflected and transmitted by the surfaces that bound the water body. These
surfaces include the wind-blown sea surface and, in shallow water, an opaque sea floor of
sediment or vegetation. There may also be objects within the water column that reflect
light.

The Level 1 discussion begins with the basics of reflection and transmission of unpolarized
light by a level or flat water surface. Although the ocean is rarely glassy smooth, reflection
and transmission by rough, wind-blown surfaces are modeled using the equations for a flat
surface applied to each small patch of sea surface, which although tilted from the normal to
the mean sea surface can be assumed to be locally flat. Other Level 1 material introduces
the bidirectional reflectance distribution function or BRDF. The BRDF is the fundamental
quantity for specifying how an opaque surface reflects light.

The first page of the Level 2 material considers reflection and transmission for polarized
light. The remainder of the chapter then shows in detail how wind-blown sea surfaces can be
described in terms of wave energy spectra and, conversely, how random sea surfaces can be
generated starting with wave energy spectra. It can be argued that this material belongs in
a text on physical oceanography, which is true. However, these techniques are widely used
both for generation of sea surfaces for quantitative modeling of reflection and transmission
of light, and for computer animation of sea surfaces as used in many movies. Moreover, you
will search in vain for a text anywhere that presents this material at the level of detail given
here. It is thus appropriate to include this material in a book on optical oceanography.

Geometric Relations

The wavelength of visible light is much, much less than the millimeter and larger spatial
wavelengths of the waves on wind-blown surfaces. Therefore, the laws of geometrical optics
and the idealization of a narrow ray of collimated light give a good description of the relevant
physical processes.

Figure figure1 illustrates a level surface with light incident onto the surface from the air
side (panel a), and from the water side (panel b). The real index of refraction of the air
is na, which is taken to be one. nw is the real index of refraction of the water, which is
approximately 1.34 at visible wavelengths. n̂ is a unit vector normal to the surface. ξ̂i is a
unit vector in the incident direction; ξ̂r and ξ̂t are respectively the directions of the reflected
and transmitted rays. θi = cos−1(|ξ̂i · n̂|) is the acute angle between the incident direction
and the normal, and θr and θt are the angles of the reflected and transmitted rays relative
to the normal.

The incident, reflected, and refracted directions all lie in the plane defined by ξ̂i and n̂.
The reflected angle is always equal to the incident angle: θr = θi, which is known as the Law
of Reflection. The incident and transmitted angles are related by

n1 sin θ1 = n2 sin θ2 , (1)

where subscripts 1 and 2 refer to any two media. This equation is usually called Snell’s
law, although more properly it should be Snel’s law. It was rediscovered in the west by
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Figure 1: Illustration of incident, reflected, and transmitted rays for air- and water-incident
light.

Willebrord Snel van Royen (1580-1626). In the days when European scientists published in
Latin, Snel’s name was Latinized to Snellius, which became Snell as Latin was replaced by
German and then English as the common language of physical science. However, this law
(in a different but equivalent form) can be traced back to the treatise On Burning Mirrors
and Lenses published by the Persian Abu ibn Sahl in Bagdad in 984.

Figure figure2 gives a visual representation of the relations between the various unit
vectors, angles, and indices of refraction.

For air-incident light, na = 1 and Snel’s law reads sin θi = nw sin θt. Then the angle of
transmission is given by

θt = sin−1
(

1

nw

sin θi

)
. (2)

The relations between the unit vectors are given by the following equations (with na = 1):

ξ̂r = ξ̂i − 2(ξ̂i · n̂)n̂ ,

and

ξ̂t =
1

nw

(ξ̂i − cn̂) ,

where

c = ξ̂i · n̂+

√
(ξ̂i · n̂)2 + n2

w − 1 .

For the water-incident case, Snel’s law reads nw sin θi = sin θt, in which case the angle of
transmission is given by

θt = sin−1(nw sin θi) . (3)

The relations between the unit vectors are then

ξ̂r = ξ̂i − 2(ξ̂i · n̂)n̂ ,
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Figure 2: Graphical representations of relations among incident, reflected, and transmitted
directions. Reproduced from Fig. 4.2 of Light and Water (1994), where ξ̂i = ξ̂′.

3



and
ξ̂t = nwξ̂i − cn̂ ,

where

c = nwξ̂i · n̂−
√

(nwξ̂i · n̂)2 − n2
w + 1 .

If nw sin θi < 1, Eq. (equation3) gives a real value for θt and light is transmitted from the
water to the air. However, if θi is greater than the critical angle for total internal reflection

θc = sin−1(1/nw) , (4)

then there is no real solution for the inverse sine. In this case, all light incident onto the
water side of the air-water surface is reflected back into the water. This is called total internal
reflection. The dotted line in the right panel of Fig. figure1 represents the critical angle.
The red unit vectors illustrate the case θi < θc with both reflected and transmitted light,
and the yellow vectors represent the case of θi > θc and total internal reflection.

It should be noted that air-incident light with a grazing incident angle of θi = 90 deg is
transmitted into the water at the critial angle: θt = θc. Thus light from the entire sky is
transmitted through the surface into a cone of half angle θc, which is known as Snel’s cone.

Fresnel’s Equations for Unpolarized Light

The equations of the previous section show the relations between the angles and directions of
the incident and the reflected and transmitted light. However, they do not show how much
light is reflected or transmitted. That information is given by Fresnel’s equations.

Consider a collimated beam of unpolarized incident light, which has some irradiance
measured on a surface normal to the direction ξ̂i of propagation. The fraction of this incident
irradiance that is reflected by the air-water surface is

RF(θi) =
1

2

{[
sin(θi − θt)
sin(θi + θt)

]2
+

[
tan(θi − θt)
tan(θi + θt)

]2}
, (5)

which holds for θi 6= 0. For normally incident light, θi = 0, the reflectance is

RF(θi = 0) =

(
nw − 1

nw + 1

)2

. (6)

Equations (likesection5) and (likesection6) hold for both air- and water-incident light. Given
the incident angle θi, the transmitted angle θt is computed using either Eq. (equation2) or
(equation3), and then Eq. (likesection5) (or likesection6) can be evaluated. For water-
incident light and θi ≥ θc, RF = 1. Figure figure3 shows the Fresnel reflectance for the range
of water indices of refraction at visible wavelengths.

To be completely general, the Fresnel equations should use the complex index of refraction
m = n + ik, where n is the real index of refraction seen above and k(λ) = λa(λ)/2π is the
complex part (a is the absorption coefficient). Thus Eq. (likesection6) should be

RF(θi = 0) =

∣∣∣∣m− 1

m+ 1

∣∣∣∣2 =
(nw − 1)2 + k2

(nw + 1)2 + k2
.
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However, for water at near-UV to near-IR wavelengths, k < 10−6 and the difference is
negligible. However k can be of order 0.1 to 1 at some UV and far-IR wavelengths, in which
case the complex index of refraction must be used.

Figure 3: Fresnel reflectance for unpolarized light and selected water indices of refraction.

Conservation of energy requires that the sum of the reflected and transmitted energy
equal the incident energy. Thus the fraction of the incident energy that is transmitted is
TF = 1 − RF. It can be confusing to see that energy is conserved when different quantities
such as plane irradiance, scalar irradiance, or radiance are used to describe the light, or when
the incident light is not a single collimated beam. This is discussed in detail on the page on
Energy Conservation.

Reflection and transmission are much more complicated when the incident light is po-
larized. The Fresnel reflectance and transmittance equations for polarized light are given in
the Level 2 page on the Fresnel Equations for Polarization of this chapter.

The n2 Law for Radiance

Snel’s law yields an important result governing how unpolarized radiance changes when going
from one medium to another, e.g., when crossing an air-water surface. Figure figure4 shows
two beams of radiance, one incident onto an interface and one transmitted. Let L1 be the
incident radiance in medium 1 defined by power Φ1 passing through an area ∆A1 normal to
the direction of photon travel and contained in a solid angle ∆Ω1 = sin θ1∆θ1∆φ1, where θ1
is polar angle measured relative to the normal to the surface and ∆φ1 is the width of the
solid angle in the azimuthal direction. Likewise, L2 is the transmitted radiance in medium 2
defined by the corresponding quantities as illustrated. The azimuthal angle does not change
when crossing the surface, so ∆Ω2 = sin θ2∆θ2∆φ1. The incident and transmitted power
passes through a common area ∆A at the interface.

The indices of refraction n1 and n2 are fixed, but the polar angle θ changes when crossing
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Figure 4: Geometry for deriving the n2 law for radiance.

the interface. Squaring Eq. (equation1) and differentiating gives

n2
1 sin θ1 cos θ1∆θ1 = n2

2 sin θ2 cos θ2∆θ2 .

Multiplying each side of this equation by the common value of ∆φ and rewriting in terms of
solid angles gives

n2
1 cos θ1∆Ω1 = n2

2 cos θ2∆Ω2 ,

which is known as Straubel’s invariant.
The radiances are defined by

L1 =
∆Φ1

∆A1∆Ω1

and L2 =
∆Φ2

∆A2∆Ω2

.

Fresnel’s equation gives the transmitted power as ∆Φ2 = [1 − RF(θ1)]∆Φ1 = TF∆Φ1. The
areas are related by ∆A1 = ∆A cos θ1 and ∆A2 = ∆A cos θ2. Thus the ratios of the incident
and transmitted radiances can be written as

L2

L1

= &
∆Φ2

∆Φ1

∆A1∆Ω1

∆A2∆Ω2

= & TF
cos θ1∆Ω1

cos θ2∆Ω2

= & TF
n2
2

n2
1
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or
L2

n2
2

= TF
L1

n2
1

.

This result is called the n-squared law for radiance. The quantity L/n2 is sometimes called
the reduced radiance or the basic radiance.

Although energy is conserved when crossing a boundary, the radiance changes by a factor
proportional to the change in the index of refraction squared. This is a simple consequence
of the change in solid angle resulting from the change in θ when crossing the boundary. Note
that for normal incidence and nw = 1.34, TF ≈ 0.979 and the radiance just below a water
surface is 0.979(1.34)2 ≈ 1.76 times the radiance in the air. Conversely, when going from
water to air, the in-water radiance is reduced by a factor of 1.76.

To the extent that losses to absorption and scattering out of the beam can be ignored
(sometimes a good approximation for atmospheric transmission, but almost never the case
in water), the radiance divided by the square of the index of refraction is constant along
any path. This result has even been called the Fundamental Theorem of Radiometry, which
is perhaps a bit grandiose given that real beams always lose at least some radiance due to
absorption and can lose or gain radiance due to scattering.

Finally, note that the n2 law applies only to radiance transmission. When tracing rays in
a Monte Carlo simulation, from which the radiance can be estimated by appropriate binning
of the transmitted rays, no n2 factor is applied to the energy of the transmitted rays or to the
radiance estimated from the detected rays. This is because the n2 effect is automatically built
into the radiance estimate ray by ray as the directions of the individual rays are computed
by Snel’s law.
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