
The preceding pages have given a detailed look at one-dimensional surfaces. We now con-
sider the more useful case of two-dimensional sea surfaces. The extension to two dimensions
is mathematically straight forward.

Let z(x, t) = z(x, y, t) be the sea surface elevation in meters at point x = (x, y) at time t.
The spatial extent of the sea surface is 0 ≤ x < Lx and 0 ≤ y < Ly. This surface is sampled
on a rectangular grid of Nx by Ny points, where both Nx and Ny are powers of 2 for the
FFT. The spatial sampling points are then

x(r) = &[0, 1, 2, ..., Nx − 1]
Lx

Nx

= r∆x, r = 0, ..., Nx − 1

y(s) = &[0, 1, 2, ..., Ny − 1]
Ly

Ny

= s∆y, s = 0, ..., Ny − 1 .

This spatial sampling frequency gives Nx and Ny spatial frequencies kx and ky (in math
frequency order)

kx(u) = &[−(Nx/2− 1), ...,−1, 0, 1, ..., Nx/2]
2π

Lx

= u∆kx, u = −(Nx/2− 1), ..., Nx/2

ky(v) = &[−(Ny/2− 1), ...,−1, 0, 1, ..., Ny/2]
2π

Ly

= v∆ky, v = −(Ny/2− 1), ..., Ny/2

.

As before, the x-dimension 0 frequency is at array element u = Nx/2 − 1 and the Nyquist
frequency is at element u = Nx − 1. Thus the positive and negative pairs of kx values are
related by kx(u) = −kx(Nx−2−u), u = 0, ..., Nx−2, with the Nyquist frequency always being
a special case because there is only a positive Nyquist frequency. Corresponding relations
hold for the y direction.

Let k = (kx, ky) denote a spatial frequency vector, where kx and ky are frequencies in
the x and y directions, respectively. For discrete values, we write kuv = (kx(u), ky(v)). The
magnitude of k is k =

√
k2x + k2y. In our (x, y) coordinate system, let the wind blow in the

+x direction. The −x direction is then upwind, and the ±y directions are the cross-wind
directions. With this choice, kx > 0 indicates frequencies of waves propagating more or less
downwind, and kx < 0 for waves propagating against the wind. kx = 0 and ky 6= 0 indicates
a wave propagating at exactly a cross-wind ±y direction. The angle of wave propagation
relative to the downwind direction for a wave of frequency (kx(u), ky(v)) is given by

ϕ(kuv) = ϕ(u, v) = tan−1

[
ky(v)

kx(u)

]
. (1)

We can thus write the 2-D surface as z(x), its Fourier amplitude as ẑ(k), and the associated
variance spectrum as Ψ(k). The discrete variance spectrum Ψ(kuv) = Ψ(u, v) gives the
variance of the wave with wavelength 2π/kuv propagating in direction ϕ(kuv) relative to the
downwind direction.

Even though the mathematical transition from one to two dimensions causes no problems,
it is again educational to take a careful look at a couple of contrived examples.
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Example: A Random Sea Surface

For the first example, a sea surface area of size Lx×Ly = 10×10m is sampled using Nx = 16
and Ny = 8 points in the x and y directions. Sea surface elevations z(x, y) were created by
drawing a N (0, 1) random number at each (x, y) value.

The upper-left panel of Fig. figure1 shows a contour plot of this surface for a particular
sequence of random numbers. The spatial periodicity of the Fourier representation is used
to extend the contour plot to the full (Lx, Ly) range of the tile, which gives a good visual
appearance. Thus the elevations at x = Lx are the same as those at x = 0, those at y = Ly

equal those at y = 0, and the elevation at (Lx, Ly) duplicates the elevation at (0, 0). The
Nx × Ny grid of sample points is shown by the solid silver dots. The points at x = Lx and
y = Ly obtained by periodicity are shown by open silver circles at the right and top of the
surface plot.

The Fourier amplitudes ẑ(kuv) = ẑ(kx(u), ky(v)) are obtained from the 2-D DFT of
z(xrs) = z(x(r), y(s)):

ẑ(kuv) = D{z(xrs)} .

The usual warning on FFT frequency order applies here. The 2-D FFT gives back the
amplitudes ẑ(kuv) with the array elements corresponding the the FFT frequency order of
Eq. (15) of the Fourier Transforms page. Before plotting, the ẑ(kuv) array elements must
be shifted into the math frequency order in both the kx and ky array directions using the
appropriate shift function for the computer language used in the plotting. For the IDL
routine used to generate Fig. figure1, the 2-D circular shift is given by the IDL command

realzhatplot = SHIFT(REAL PART(zhat),Nx/2− 1,Ny/2− 1)

where zhat is the complex 2-D array returned by the FFT routine, and realzhatplot is the
2-D array plotted in the upper right panel of Fig. figure1.

The upper right panel of Fig. figure1 plots the real part of ẑ(kuv), and the lower left panel
plots the imaginary part. The Nyquist frequency kNy

x = 2π/(2∆x) = 5.03 rad/m lies along
the right side of the contour plot. The Nyquist frequency kNy

y = 2π/(2∆y) = 2.51 rad/m
lies along the top of the contour plot. The white space at the left and bottom highlights
that there are no negative Nyquist frequencies. In each amplitude plot a particular pair of
±kuv values is indicated by the black arrows; the (0, 0) frequency is shown by a black dot.
Note that in the plot of the real part, Re{ẑ(−kuv)} = Re{ẑ(+kuv)}, whereas in the plot of
the imaginary part, Im{ẑ(−kuv)} = −Im{ẑ(+kuv)}. The contouring is rather low quality
for so few points, but it is easy to see in the digital output that when the kx is the Nyquist
frequency (the points along the right column of points in the plot), the symmetries are given
by Re{ẑ(kNy

x ,−ky)} = Re{ẑ(kNy
x ,+ky)} and Im{ẑ(kNy

x ,−ky)} = −Im{ẑ(kNy
x ,+ky)}. A

corresponding relation holds for ±kx when ky = kNy
y (the points along the top row of the

plot). The point at the upper right of the plot corresponds to both kx and ky being at their
respective Nyquist frequencies. As always, the array elements at the Nyquist frequencies
must be treated as special cases when writing computer programs. These symmetries show
that the 2-D amplitudes are Hermitian: ẑ∗(−kuv) = ẑ(kuv). The discrete 2-D variance
spectrum Ψ(kuv) = Ψ(u, v) = ẑ(u, v)ẑ∗(u, v) is contoured in the lower right panel of the
figure. Note the Ψ(−kuv) = Ψ(kuv) symmetry.

2



Figure 1: A two-dimensional random sea surface and its Fourier transform and two-sided
variance spectrum. The surface elevations in the upper left panel were randomly drawn from
a N (0, 1) distribution. The black arrows highlight a particular ±kuv frequency pair. The
blue-blue and red-red symmetry of the real part of the Fourier amplitudes, and the red-blue
symmetry of the imaginary part, shows the Hermitian nature of the amplitudes. The gray
dots show the locations of the discrete values that were contoured to create the figures.
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For this example, the standard check on the 2-D discrete Parseval’s relation, Eq. (16) on
page Fourier Transforms, gives

Nx−1∑
r=0

Ny−1∑
s=0

|z(r, s)|2 = &NxNy

Nx−1∑
u=0

Ny−1∑
v=0

|ẑ(u, v)|2

= &NxNy

Nx−1∑
u=0

Ny−1∑
v=0

Ψ(u, v) = 130.90 m2 .

In all of these plots, it should be remembered that the discrete values are known only at
the locations of the silver dots. The contouring routine simply interpolates between these
points to create a visually appealing figure. The continuous color in the plots does not imply
that the values are continuous and known in between the discrete points.

Example: A Sea Surface of Crossing Sinusoids

For a second example, let us define a surface from a pair of crossing sinusoids as follows:

z(xr, ys) = A1 cos(kx1xr + ky1ys + φ1) + A2 cos(kx2xr + ky2ys + φ2) , (2)

where as usual r = 0, ..., Nx − 1; s = 0, ..., Ny − 1; and where

A1 = 1.0 m is the amplitude of the first wave

Nx1 = 2 is the number of wave lengths in the x direction in [0, Lx] for the first wave

kx1 = 2.0πNx1/Lx = 1.257 rad/m2 is the kx frequency of the first wave

Ny1 = 1 is the number of wave lengths in the y direction in [0, Ly] for the first wave

ky1 = 2.0πNy1/Ly = 0.628 rad/m2 is the ky frequency of the first wave

φ1 = 0 is the phase of the first wave; 0 gives a cosine wave

A2 = 0.5 m is the amplitude of the second wave

Nx2 = 4 is the number of wave lengths in the x direction in [0, Lx] for the second wave

kx2 = 2.0πNx2/Lx = 2.513 rad/m2 is the kx frequency of the second wave

Ny2 = 3 is the number of wave lengths in the y direction in [0, Ly] for the second wave

ky2 = −2.0πNy2/Ly = −1.885 rad/m2 is the ky frequency of the first wave

φ2 = π/2 is the phase of the second wave; π/2 gives a sine wave

The wavelength of the first wave is Λ1 = 2π/
√
k2x1 + k2y1 = 4.47 m, and that of the second

wave is Λ2 = 2.00 m. The direction of propagation of the first wave relative to the +x axis is

ϕ1 = tan−1

(
ky1
kx1

)
= 26.57 deg ,
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and the direction of propagation of the second wave relative to the +x axis is

ϕ2 = tan−1

(
ky2
kx2

)
= −36.87 deg .

The upper left panel of Fig. figure2 shows this surface elevation pattern when Eq. (like-
section2) is sampled with Nx = Ny = 16. The dominant red-blue pattern shows the first wave
oriented with the direction of propagation along either the +k1 direction at ϕ1 = 26.57 deg
or the −k1 direction at ϕ1 = 26.57 + 180 = 206.57 deg. We cannot of course determine the
actual direction +k1 or −k1 of propagation from sea surface elevations at a single time. The
dominant wave pattern is modulated by the second wave, which has one half the amplitude
of the first wave.

The choice above of φ1 = 0 in Eq. (likesection2) makes the dominate wave a cosine
in our coordinate system, and φ2 = π/2 makes the second wave a sine. As we saw in the
1-D examples, variance associated with cosine waves appears in the real part of the Fourier
amplitudes, and the variance in sine waves appears in the imaginary parts. We see this again
here for the first (cosine) and second (sine) waves of the surface. Since each wave pattern has
only one frequency, there is only one pair of points at ±k1 in the plot of the real part, and
one pair at ±k2 in the plot of the imaginary part. The amplitudes at all other frequencies
are zero. The symmetries of these points again show the Hermitian nature of the amplitudes.

The lower right panel shows the two-sided variance function Ψ2s(k) for this surface. Note
that the first wave has four times the variance of the second wave because the amplitude of
the first wave is twice that of the second wave. Ψ2s(−k) = Ψ2s(+k). Note also that you
can look at a 2-D variance spectrum and see how much energy is propagating in a given ±k
direction.

For this simple example involving just four frequencies it is easy (from the digital output)
to hand check that the right-hand side of the 2D discrete Parseval’s relation, Eq. (18) of the
Fourier Transforms page, is

NxNy

∑
u

∑
v

|ẑ(u, v)|2 = 16 · 16
[
(0.5)2 + (0.5)2 + (0.25)2 + (−0.25)2

]
= 160 m2 .

This value agrees exactly with the corresponding sums of the surface elevations,
∑

r

∑
s[z(r, s)]2,

and variance values, NxNy

∑
u

∑
v Ψ(u, v).
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Figure 2: A two-dimensional sea surface composed of two crossing sinusoids, and the resulting
Fourier amplitudes and variance.
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