
Now, again, we face the reverse process: start with a two-dimensional, one-sided variance
density spectrum and generate a random 2-D realization of a sea surface. The first task is
to conjure up a two-dimensional variance density spectrum, which requires some effort.

Theory

Let Ψ(k) = Ψ(kx, ky) denote a 2-D elevation variance spectrum as defined on the Wave
Variance Spectra: Theory page. This spectrum has units of m2/(rad/m)2. By definition,
the integral of Ψ(kx, ky) over all frequencies gives the elevation variance:

var{z} = 〈z2〉 =

∫ ∞
−∞

∫ ∞
−∞

Ψ(kx, ky) dkx dky .

As in the 1-D case on page Spectra to Surfaces: 1D, 〈...〉 indicates expectation or ensemble
average over many measurements of the sea surface.

In the discrete case, the kuv values coming out of ẑ = D{z} point both “downwind”
(positive kx(u) values) and “upwind” (negative kx(u) values), i.e. there are both posi-
tive and negative frequencies represented in the “two-sided” variance spectrum, denoted
as Ψ2s[u, v], u = −(Nx/2 − 1), ..., Ny/2, v = −(Ny/2 − 1), ..., Ny/2 as above. In general,
Ψ2s(−kuv) 6= Ψ2s(+kuv) because more energy propagates downwind than upwind at a given
frequency. kx(Nx/2) is the Nyquist frequency for waves propagating in the x direction;
ky(Ny/2) is the Nyquist frequency for waves propagating in the y direction. Ψ2s(0, 0) is the
variance at zero frequencies, i.e., the variance of the mean sea surface; this term is normally
set to 0 so that the mean sea surface is at height 0.

The 2-D equivalents of Eqs. (1) and (2) on page Spectra to Surfaces: 1D are

ẑo(kuv) ≡ &
1√
2

[ρ(kuv) + iσ(kuv)]

√
Ψ1s(k = kuv)

2
∆kx∆ky (1)

= &
1√
2

[ρ(kuv) + iσ(kuv)]
√

Ψ2s(kuv) . (2)

Here, as before, ρ(kuv) and σ(kuv) are independentN (0, 1) random variables, with a different
random variable drawn for each kuv value. As in the 1-D case, the expected value of ẑo(kuv)
gives back whatever variance spectrum is used for Ψ2s(kuv), but is not Hermitian. As before,
the notation in these equations distinguishes between the value of the continuous spectral
density function evaluated at a discrete frequency value, Ψ1s(k = kuv), and the discrete
variance point function, Ψ2s(kuv).

We must define random Hermitian amplitudes for use in the inverse Fourier transform.
Looking ahead to the page on Time Dependent Surfaces, which extends the results of this
page to time-dependent surfaces, define the time-dependent spectral amplitude

ẑ(kuv, t) ≡
1√
2

[
ẑo(kuv)e

−iωuvt + ẑ∗o(−kuv)e+iωuvt
]
. (3)

This function is clearly Hermitian, so the inverse DFT applied to ẑ(kuv, t) will give a real-
valued z(xrs, t). Recall that a function of the form cos(kx−ωt) gives a wave propagating in
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the +x direction. The corresponding ẑo(kuv)e
−iωt in this equation gives a wave propagating

in the +k direction, which is in the downwind half plane of all directions. In general the
temporal angular frequency ωuv is a function of the spatial frequency kuv. For example, for
deep-water gravity waves, ω2

uv = gkuv.
For simplicity of notation, let us momentarily drop the rs and uv subscripts on the

discrete variables. The ẑ(k, t) of Eq. (likesection3) is also consistent with the variance
spectrum:

〈|ẑ(k, t)|2〉 = &〈ẑ(k, t)ẑ∗(k, t)〉

= &
〈 1√

2

[
1√
2

[ρ(k) + iσ(k)]
√

Ψ2s(k)eiωt +
1√
2

[ρ(−k)− iσ(−k)]
√

Ψ2s(−k)e−iωt
]
×

&
1√
2

[
1√
2

[ρ(k)− iσ(k)]
√

Ψ2s(k)e−iωt +
1√
2

[ρ(−k) + iσ(−k)]
√

Ψ2s(−k)eiωt
]〉

= &
1

4

〈 [
ρ2(k)− iρ(k)σ(k) + iσ(k)ρ(k) + σ2(k)

]
Ψ2s(k)+

& [ρ(k)ρ(−k) + iρ(k)σ(−k) + iσ(k)ρ(−k)− σ(k)σ(−k)]
√

Ψ2s(k)
√

Ψ2s(−k)ei2ωt+

& [ρ(−k)ρ(k)− iρ(−k)σ(k)− iσ(−k)ρ(k)− σ(−k)σ(k)]
√

Ψ2s(−k)
√

Ψ2s(k)e−i2ωt+

&
[
ρ2(−k) + iρ(−k)σ(−k)− iσ(−k)ρ(−k) + σ2(−k)

]
Ψ2s(−k)

〉
= &

1

2
[Ψ2s(k) + Ψ2s(−k)] .

Here we have noted that all terms like 〈ρ(k)ρ(−k)〉 are zero because of the independence
of the random variables for different k values, as are terms like 〈ρ(k)σ(k)〉. The remaining
term is the total variance associated with waves propagating in the downwind and upwind
directions at the spatial frequency of magnitude k. It should be noted that this term is
independent of time even though the waves z(x, y, t) depend on time. This is because the
total variance (or energy) of the wave field is the same at all times, even though the exact
shape of the sea surface varies with time.

If only a “snapshot” of the sea surface at one time is available, it is not possible to resolve
how much of the total variance is associated with waves propagating in direction k compared
to the opposite direction −k. The forward DFT, ẑ(k, t) = D{z(x, y, t)}, and ẑ(k, t)ẑ∗(k, t)
then gives Ψ2s(−k) = Ψ2s(k), in which case the last equation reduces to

〈ẑ(k, t)ẑ∗(k, t)〉 = Ψ2s(k) .

In any case, the amplitudes defined by Eq. (likesection3) are Hermitian, so that the
real part of the inverse Fourier transform Z(x, t) = D−1{ẑ(k, t)} gives a real-valued sea
surface z(x, t). That sea surface is consistent with the variance spectrum Ψ2s(k) at every
time t. Wave variance (energy) is thus conserved in a round-trip calculation from variance
spectrum to sea surface and back to variance spectrum. In the time-dependent case, if
Ψ2s(k) > Ψ2s(−k), then more variance will be contained in waves propagating in the +k
direction than in the −k direction. This is all that we can ask from Fourier transform
techniques.

Although Eqs. (likesection2) and (likesection3) are compact representations of the ran-
dom spectral amplitudes, the actual evaluation of these equations in a computer program
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warrants further examination. In particular, the Nyquist frequencies are always special
cases because there is only a positive Nyquist frequency, kNy

x = Nx

2
2π
Lx

at array element
Nx− 1, with a corresponding equation for the Nyquist frequency in the y direction. Writing
e±iωt = cos[ω(k)t]± i sin[ω(k)t] and expanding Eq. (likesection3) gives

2 ẑ(k, t) = &
[
ρ(k)

√
Ψ2s(k) + ρ(−k)

√
Ψ2s(−k)

]
cos[ω(k)t]

−&
[
σ(k)

√
Ψ2s(k) + σ(−k)

√
Ψ2s(−k)

]
sin[ω(k)t]

+&i

{[
ρ(k)

√
Ψ2s(k)− ρ(−k)

√
Ψ2s(−k)

]
sin[ω(k)t]

+&
[
σ(k)

√
Ψ2s(k)− σ(−k)

√
Ψ2s(−k)

]
cos[ω(k)t]

}
. (4)

These terms are all Nx×Ny arrays, but note that terms like ρ(k)
√

Ψ2s(k) represent element-
by-element multiplications, not matrix multiplications.

For a particular array element ẑ(kx(u), ky(v), t) = ẑ(u, v, t), and using the indexing rela-
tion k(u) = −k(N − 2 − u), u = 0, ..., N − 2 for frequencies written in math order, we can
write

2& ẑ(u, v, t)

= &

[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
cos[ω(k(u, v))t]

−&

[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
sin[ω(k(u, v))t]

+&i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
sin[ω(k(u, v))t]

+&

[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− 2− u,Ny− 2− v)

√
Ψ2s(Nx− 2− u,Ny− 2− v)

]
cos[ω(k(u, v))t]

}
.

(5)

This equation allows for efficient computation within loops over array elements. In particular,
the code can loop over the non-positive kx(u) values, u = 0, ..., Nx/2, and over all ky(v) values,
v = 0, ..., Ny − 2 to evaluate the amplitudes for all non-Nyquist frequencies. The positive
kx(u) values are then obtained from the negative kx(u) values by Hermitian symmetry. The
Nyquist frequencies are evaluated by an equation of the same form, but with one or the other
index held fixed (e.g., u = Nx − 1 while v = 0, ..., Ny − 2). The amplitude ẑ(kx = 0, ky = 0)
at array element (u, v) = (Nx/2 − 1, Ny/2 − 1) is usually set to zero, corresponding to the
mean sea level being set to 0. For generation of time-independent surfaces, we can set t = 0
so that the cosines are one and the sines are zero, which cuts the number of terms to be
evaluated in half.

If the frequencies are in the FFT order, then the last equation has the same general form,
but the indexing that expresses Hermitian symmetry is different: k(u) = −k(N − u), u =
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Figure 1: Pseudocode for looping over non-zero frequencies.

1, ..., N−1, with k = 0 being a special case. The equation corresponding to Eq. (likesection5)
is then

2& ẑ(u, v, t)

= &

[
ρ(u, v)

√
Ψ2s(u, v) + ρ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
cos[ω(k(u, v))t]

−&

[
σ(u, v)

√
Ψ2s(u, v) + σ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
sin[ω(k(u, v))t]

+&i

{[
ρ(u, v)

√
Ψ2s(u, v)− ρ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
sin[ω(k(u, v))t]

+&

[
σ(u, v)

√
Ψ2s(u, v)− σ(Nx− u,Ny− v)

√
Ψ2s(Nx− u,Ny− v)

]
cos[ω(k(u, v))t]

}
. (6)

However, this equation does not explicitly show the special cases. Let zhat[u,v] be the
array of ẑ(k, t) = ẑ(kx(u), ky(v), t) values at a particular time t. r[u,v] and s[u,v] are the ar-
rays of random numbers ρ(u, v) and σ(u, v), respectively. Psiroot[u,v] is 1

2

√
Ψ2s(kx(u), ky(v))

(incorporating the 2 seen on the left-hand side of Eq. (likesection6)). With other obvious
definitions, Fig. figure1 shows the pseudo code to evaluate Eq. (likesection6) at a particular
time t.

Figure figure2 shows the pseudocode for looping over all ky values for the special case of
kx = 0 at frequency array index u = 0. Note that for kx = 0, the ±ky values are complex
conjugates.

Figure figure3 shows the pseudocode for looping over all kx values for the special cases
of ky = 0 at frequency array index v = 0. Note that for ky = 0, the ±kx values are complex
conjugates.

Finally, set the (kx, ky) = (0, 0) value to 0, which sets the mean sea level to zero: zhat[0,0]
= COMPLEX(0.0, 0.0).

4



Figure 2: Pseudocode for looping over all ky values for the special case of kx = 0 at frequency
array index u = 0.

Figure 3: Pseudocode for looping over all kx values for the special cases of ky = 0 at frequency
array index v = 0.
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Array zhat[u,v] = ẑ(kx(u), ky(v)) as just defined is Hermitian and has the frequencies in
FFT order ready for input to an FFT routine.

Showing this level of detail may seem tedious, but it is absolutely critical that the ẑ(k, t)
array be properly computed down to the last array element. Any error will show up in the
generated sea surface as either a non-zero imaginary part of the complex array Z[r, s] =
D{zhat[u, v]} (easy to detect) or an incorrect sea surface elevation (often much harder to
detect).

Example: A Two-Dimensional Sea Surface

As a specific example of the above algorithm, consider the following. Let us use a coarse
grid sampling of Nx ×Ny = 64× 64 points, which makes it easier to see certain features in
the associated plots. The physical region to be simulated is Lx × Ly = 100 × 100 m. The
two-dimensional, one-sided variance spectrum of Elfouhaily et al. (1997) is used. Thus we
have

Ψ(kx, ky) = &
1

k
S(k)Φ(k, ϕ) ≡ Ψ(k, ϕ)

= &Ψ
(
k =

√
k2x + k2y, ϕ = tan−1(ky/kx)

)
.

where S(k) is the omnidirectional spectrum and Φ(k, ϕ) is the nondimensional spreading
function, as defined on page Wave Variance Spectra: Examples.

The upper left plot of Fig. figure4 shows this spectrum for a wind speed of 5 m s−1 and
a fully developed sea state. The contours are of Ψ1s(kx, ky) evaluated at the discrete grid
points; the 1

2
∆kx∆ky factor seen in Eq. (likesection2) has not yet been applied to create a

discrete two-sided spectrum. The line along ky = 0 corresponds to the spectrum plotted in
the third figure on page Wave Variance Spectra: Examples. We see in both plots that for a
5 m s−1 wind, the spectrum peaks near 0.2− 0.3 rad/m.

The plots of the real and imaginary parts of ẑ(kx(u), ky(v)) show that most of the variance
is at low frequencies and that the amplitudes have the Hermitian symmetry illustrated in
the two figures of the previous page. The lower right panel of the plot shows a contour plot
of the sea surface generated from the inverse FFT of the amplitudes. The significant wave
height for this surface realization is 0.60 m, in good agreement with the expected value given
above for the Pierson-Moskowitz spectrum, which is similar to the Elfouhaily et al. spectrum
in the gravity wave region.
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Figure 4: Example two-dimensional sea surface generated from a 2-D, one-sided variance
spectrum. The resolution is only 64 × 64 grid points, so as to make the features of the
underlying spectrum and the Fourier amplitudes easier to see. Generated by IDL routine
cgGenerate 2D SeaSurface.pro.
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