
Figure 1 of the Introduction page of this chapter shows the size ranges commonly asso-
ciated with different components of natural waters. This page discusses the theory of how
to quantify the number of particles as a function of their size. The Level 3 page Creat-
ing Particle Size Distributions from Data discusses the mechanics of creating particle size
distributions from measured data.

Non-uniqueness of Particle Size

The first problem is to decide what is meant by particle “size,” especially when speaking of
statistical measures like the “average size” of a collection of particles.

Suppose we have three spherical particles of radii r = 1, 2, and 3. What is the “average
size” of these three spheres?

If the average size is based on the radius, then the average (radius) sphere has a radius
of (1 + 2 + 3)/3 = 2.

If the average is based on the surface area of the spheres, A = 4πr2, then the average
surface area is 4π(12 + 22 + 32)/3 which corresponds to a radius of r = 2.16. The same holds
true for the cross-sectional area of the spheres.

If the average is based on the volume of the spheres, V = 4
3
πr3, then the average volume

is 4
3
π(13 + 23 + 33)/3 which corresponds to a radius of r = 2.29.
So there is ambiguity in how to define the “average particle size” even for a collection of

spherical particles.
The situation is ever worse for non-spherical particles, which do not have a single pa-

rameter like radius that can be used to specify the size of the particle. The “size“ of a
non-spherical particle is sometimes taken to be

• the largest dimension of the particle,

• the arithmetic mean of the largest dimension of the particle, DL, and the smallest
dimension, DS: 1

2
(DL +DS),

• the geometric mean of the largest and the smallest dimensions:
√
DLDS,

• the diameter of a sphere with the same surface area as the particle (an “area-equivalent”
sphere), or

• the diameter of a sphere with the same volume as the particle (a “volume-equivalent”
sphere),

and there are also other measures of the “size” of a non-spherical particle. Note that the
arithmetic and geometric means are equal for spherical particles, but are in general not equal.

All of these measures of particle size are valid, but one measure may be optimum for
a particular application. For example, a Coulter Counter measures the change in electrical
conductivity when a particle passes through the sensor. This change is proportional to the
amount of material in the particle, i.e. to the particle volume. Thus a Coulter Counter
measures the the size of a volume-equivalent sphere. Laser diffraction instruments measure
diffraction of light caused by a particle in the light beam. The angular shape of the diffraction
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pattern is determined by the cross-sectional (projected) area of the particle as seen by the
beam. Thus laser diffraction measures the size of an area-equivalent sphere.

The diameters of area-equivalent and volume-equivalent spheres can be considerably dif-
ferent. Consider a cubical particle of length ` on a side. The volume is Vc = `3 and the
equivalent-volume sphere (Vs = πD3/6) has a diameter

Dvol =

(
6

π

)1/3

` = 1.24` .

The surface area of the cube is Ac = 6`2 and of a sphere is As = πD2, which leads to

Darea =

(
6

π

)1/2

` = 1.38` .

If cubes of this size are seen randomly oriented in a laser beam, the average projected area
is one-fourth of the surface area (Cauchy’s Average Projected Area Theorem, which shows
that for a convex polyhedron, the average projected area over all orientations, i.e. the
average cross section, is one-fourth the surface area of the polyhedron). Thus the laser sees,
on average, particles of area 6`2/4, and the equivalent-projected-area sphere has diameter
πD2/4. This again leads to Darea =

√
6/π`.

Thus for a cube the diameter of the equivalent-area sphere is 1.11 times the diameter
of the equivalent-volume sphere. Coulter-principle and laser-diffraction instruments will
therefore report somewhat different equivalent-sphere sizes for the same particle. Clearly, it
is important to understand exactly what an instrument measures and what instrument was
used to measure particle sizes.

Unfortunately, publications sometimes fail to state exactly what measure they are using
for the size of non-spherical particles.

Particle Size Distributions

First decide on some measure of particle size; call it the diameter D. If the particles are
known to be spherical (e.g., fog droplets or small bubbles in water), then D is the diameter
of the sphere. For non-spherical particles, D is most often taken to be the diameter of the
volume-equivalent sphere. The next step is to quantify how many particles there are of each
size D. There are two equivalent ways to do this.

The cumulative number size distribution (CSDn) N(D) is usually defined (in the particle-
sizing literature) as the number of particles per unit volume larger than size D. N(D) is
usually expressed in units of m−3. In principle, this function can be measured simply by
counting the numbers of particles larger than a given size D, as D in principle ranges from
0 to∞, but in practice D ranges from some minimum Dmin to some maximum Dmax. These
minimum and maximum sizes are usually determined by the instrument used to do the
counting.

The particle number size distribution (PSDn) n(D) is a function defined so that n(D)dD
is the number of particles per unit volume between size D and D+ dD (or in the size range
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D±D/2). The units of n(D) are usually number of particles per cubic meter per micrometer
of size range, i.e. m−3 µm−1.

The CSDn, N(D), as defined above decreases as D increases, so dN(D)/dD is negative.
The corresponding PSD is then the negative of the derivative of the CSD, and is usually
written as

n(D) =

∣∣∣∣dN(D)

dD

∣∣∣∣ (m−3 µm−1) . (1)

Because of the large range of values for both N(D) and D, it is customary to plot these
functions on log-log scales and to work with logarithmic size intervals. You then see (e.g.,
Junge (1953) and Liley (1992)) n(D) defined in terms of a log derivative, which is related to
dN(D)/dD by

dN(D)

d logD
=

D

log e

dN(D)

dD
. (2)

The log e comes from a change of base from base 10 logarithms, which are convenient for
working with data, to base e natural logarithms, which are convenient for mathematics. Thus
PSDs defined by logarithmic and linear derivatives will differ by a factor of D/ log e = 2.30D:

n′(D) =

∣∣∣∣dN(D)

d logD

∣∣∣∣ =
D

log e

∣∣∣∣dN(D)

dD

∣∣∣∣ =
D

log e
n(D) .

The converse of Eq. (likesection1) is

N(D) =

∫ ∞
D

n(D)dD (m−3) .

The total number of particles per unit volume is given by

Nt = N(0) =

∫ ∞
0

n(D)dD (m−3) .

In the particle sizing literature, it is customary to use a diameter D as the measure
of particle size. However, Mie Theory usually expresses its size parameter in terms of the
particle radius r = D/2. If using a PSD(D) in Mie calculations as described on the Mie
Theory page, it is necessary to use PSD(r) = 2PSD(D).

Area and volume size distributions

The previous definition (likesection1) of the PSD was for the number of particles in a unit
volume, hence the notation PSDn or n(D), with the subscript n indicating number of par-
ticles, and the name number size distribution. We can also define size distributions for the
area and volume of the same particles. The surface area of a sphere is πD2, so the PSD for
area (subscript a) is

PSDa(D) = πD2PSDn(D) = πD2n(D) (µm2 m−3 µm−1) . (3)

Note that the units of the area size distribution PSDa(D) are particle surface area, usually
in µm2, per unit volume per unit size interval. The size distribution for the cross-sectional
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area of the particles is π
4
D2PSDn(D), with the same units. The PSD for particle volume,

π
6
D3, is then (subscript v)

PSDv(D) =
π

6
D3PSDn(D) =

π

6
D3n(D) (µm3 m−3 µm−1) . (4)

Now the units of the volume size distribution are particle volume, usually in units of µm3,
per unit volume per unit size interval. For particle volume measured in cubic micrometers,
PSDv(D) thus gives a size distribution for particle volume in parts per million, per unit
size interval. Of course, these formulas are based on the assumed validity of area- and
volume-equivalent spheres.

The total surface area of particles per unit volume is

At = Na(0) =

∫ ∞
0

PSDa(D)dD = π

∫ ∞
0

D2n(D)dD (µm2 m−3) .

The total volume of particles per unit volume is

Vt = Nv(0) =

∫ ∞
0

PSDv(D)dD =
π

6

∫ ∞
0

D3n(D)dD (µm3 m−3) .

If the quantity of interest is the number of particles (e.g., the number of phytoplankton of
various sizes), then the number size distribution n(D) is the relevant distribution. However,
some processes depend more on the surface area of the particles than on their number. For
example, chemical reactions such as combustion (e.g., burning of coal dust in a power plant)
depend strongly on the surface area, and laser diffraction is governed primarily by particle
cross-sectional area. For such problems, PSDa is the distribution of interest. For processes
that depend on particle volume or mass (e.g., the mass of sediment material resuspended in
a bottom boundary layer or particle buoyancy in a fluid), the volume distribution PSDv is
the distribution of interest.

Many commercial particle sizing instruments allow the user to select the output as a
number, area, or volume PSD. Keep in mind that the conversions between one form of PSD
and another are being made on the basis of an assumed equivalent spherical particle, even
though the underlying measurement may be based on particle area (laser diffraction) or vol-
ume (Coulter counter). Thus a laser diffraction instrument may give a good measurement for
the area PSDa even for nonspherical particles, but errors can be introduced when converting
the area PSD to number or volume PSDs. A Coulter counter may give a good measurement
of a volume distribution PSDv even for nonspherical particles, but errors can be introduced
with converting the volume distribution to area or number distributions.

Comments on terminology

As is so often the case, different authors sometime use different terminology. For example,
Bader (1970) calls N(D) the cumulative number distribution function and n(D) the number
distribution function. Jonasz (1983) calls N(D) the cumulative size distribution and n(D)
the particle size distribution. I use the term cumulative number size distribution (CSDn)
for N(D) and particle number size distribution (PSDn) for n(D) because that seems to be
the most common in the literature (subscript n for number).
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However, in probability theory, a cumulative distribution function CDF (D) refers to the
how much of a total is less than D, rather that greater than D as used for N(D). Runyan
et al. (2020) compute a true CDF (D) by dividing the PSD(D) by the total number of
particles over all sizes, Nt, to get a true PDF (D), and then computing a (nondimensional)

CDF as CDF (D) =
∫ D
0

[n(D′)/Nt] dD
′. They also employ a carefully designed nomenclature

with N ′, A′, and V ′ denoting the number, area, and volume PDFs, which they refer to as
density functions. This is somewhat in analogy to a spectral density function, which shows
how much of something there is per unit interval of distance or frequency. Their true CDFs
are denoted by CDFn(D), CDFa(D), and CDFv(D) for the number, area, and volume CDFs
computed from the respective density functions.

Any of the functions CSDn(D) = N(D), PSDn(D) = n(D), PSDa(D), PSDv(D),
CDFn(D), CDFa(D), CDFv(D) etc. is properly termed a particle size distribution. They
are all different ways of describing how some feature of particles (number, area, volume)
change with size, and one can be computed from and of the others (under certain assumptions
like spherical particle shapes).

I suspect that the “backwards” definition of the cumulative size distribution as used in
particle analysis traces back to measurement of size distributions of soil or other particles
using a succession of wire mesh sieves. You first sieve out the large particles (gravel, for
example) and count those. Then a smaller mesh collects the next smaller size (sand, for
example), and so on down to the finest particles (e.g., silt). The fine meshes are very delicate,
so you have to remove the large particles first. Thus as the sieving process works from large
to small particles sizes, you are accumulating the number of particles larger than the current
sieve size, and building up a CSD(D) that shows how many particles are larger than D.
Given a normalized probability distribution function PDF (D) (e.g, PDFn(D) = n(D)/Nt,
it is convenient to integrate (or sum) the PDF from small to large values of D, and thus
build up a CDF (D) that shows the fraction of the total that is less than D.

Models for Particle Size Distributions

Many models have been proposed for particle size distributions. These differ according to the
environment (atmosphere, ocean, industrial process) and particular data set being analyzed.
The classic studies by Junge (Junge (1953), Junge (1955)) were concerned with aerosol size
distributions. He found that a number size distribution of the form

dN(D)

d logD
∝ D−3 (5)

gave a good fit to aerosols down to about 1 µm in diameter. Note that according to Eq.
(likesection2), the D−3 dependence of Eq. (likesection5) corresponds to a D−4 dependence
when written as

n(D) =

∣∣∣∣dN(D)

dD

∣∣∣∣ ∝ D−4 (6)

Thus you usually see the statement than a Junge distribution has a slope of -4 when n(D)
and D are plotted on logarithmic axes.
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Figure 1: Approximate size distribution of biological particles in the ocean. The data points
correspond to the mid-points of the size classes. The blue line is a Junge particle size
distribution centered on the picoplankton point. Data courtesy of D. Stramski from data
originally published in Stramski and Kiefer (1991).

Figure figure1 shows one instance of the number PSD for various size classes of marine
biological particles; D is the diameter of a volume-equivalent sphere. The Junge distribution
is shown as a blue line, with the magnitude fixed by the value for picoplankton.

A more general number size distribution model is the power law distribution, which is
usually written as

n(D) = n(Do)

(
D

Do

)−S
. (7)

The exponent S is usually called the slope parameter. n(Do) is the value of the distribution
in m−3 µm−1 at a reference diameter Do. The Junge distribution (likesection6) is a special
case of a power law distribution for S = 4. (Some authors call the power law distribution a
Junge distribution, but others are careful to use the term Junge distribution only for S = 4
because that is the only slope Junge considered in his papers.)

Figure figure2 shows 168 number size distributions n(D) measured over the equivalent-
sphere size range 0.8 ≤ D ≤ 120 µm in Arctic waters. When fit to the power law model
of Eq. (equation7), the best-fit values of −S have the distribution of values shown in Fig.
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Figure 2: 168 particle number size distributions N ′ = n(D) taken in Arctic waters. From
Fig. 2 of Runyan et al. (2020). Reproduced by permission under a Creative Commons
license.

figure3. The average of the 168 slope parameters is S = 3.6± 0.37.
Figure figure4 shows two of the PSDs of Fig. figure2 along with the corresponding area

and volume distributions, and the cumulative distribution functions. Although the fit of
the power-law model (equation7) to these number PSDs appears quite good on a log-log
plot, it must be noted that there are order-of-magnitude deviations from the best-fit curves,
namely near 40-50µm in the upper left figure, and near 1.5µm in the lower-left figure. Such
deviations are common in fits such as these and can result, for example, from a bloom of a
particular species of phytoplankton. It should be noted from the CDFs in the right panels
that the total number of particles comes mostly from particles less than about 3µm, but the
total volume of particles comes mostly from the larger particles greater than about 30 µm.
This is simply because one particle with D = 10 µm has as much volume as 1000 particles
of size D = 1 µm, for example.

It sometimes happens that the small size and large size ends of the distribution have
different slopes. A better fit is then obtained by separate fits of a power law for the two size
regions, but other distributions have also been used.

It is important to recognize that a power-law distribution implies that the size range
extends from D = 0 to ∞. This is never the case in nature. The smallest phytoplankton
have a diameter of about 0.2 µm and the largest are about 200 µm. Thus a PSD for
phytoplankton, whatever its mathematical form, should be applied only for the D = 0.2
to 200 µm size range, and perhaps for an even smaller range. Particular species or size
classes of phytoplankton have much small size ranges. The upper panel of Fig. figure5 shows

7



Figure 3: Distribution of the best-fit exponents of the power-law model of Eq. (equation7)
when fit to the 168 PSDs of Fig. figure2. From Fig. 3 of Runyan et al. (2020). Reproduced
by permission under a Creative Commons license.
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Figure 4: Two sets of PSDs from the deep chlorophyll maximum at two locations (top
and bottom rows) in the Arctic. The left panels show the number (N ′ = n(D)), area
(A′ = PSDa(D)), and volume (V ′ = PSDv(D)) distributions. The right panels show the
corresponding cumulative distribution functions for number, area, and volume. The dashed
lines show the power law distributions, based on the best-fit to the number distributions.
Figure 5 of Runyan et al. (2020). Reproduced by permission under a Creative Commons
license.
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measured number PSDs for 18 classes and species of phytoplankton (VIRU is viruses, HBAC
is heterotrophic bacteria, PROC is prochlorococcus, ..., MICA is Prorocentrum micans ; see
Stramski et al. (2001) for the full listing and description of these microbes). The bottom
panel of the figure show the sum of the individual PSDs, with the concentrations of each
class chosen within the ranges of typical values so that the total (except for viruses) obeys a
Junge distribution (S = 4 in Eq. (equation7)). Modeled distributions for detritus, minerals,
and bubbles are also shown. These PSDs were used to model the inherent optical properties
of oligotrophic waters; the total chlorophyll of the sum is 0.18 mg Chl m−3.

The PSDs of individual species or classes of particles as seen in the upper panel of Fig.
figure5 are often modeled by a log-normal distribution. In this distribution, the numbers are
normally distributed when D is plotted on a logarithmic scale as in the preceding figures, or
equivalently, using a normal distribution in lnD rather than in D. That is, lnD is distributed
as a Gaussian probability distribution function:

pdf(lnD) =
1

σ
√

2π
exp

[
−(lnD − µ)2

2σ2

]
, (8)

where µ and σ are the mean and standard deviation of lnD, respectively. Note that this
pdf(lnD) satisfies ∫ ∞

−∞
pdf(lnD)d lnD = 1 ,

as is required of any probability distribution function. Noting that pdf(D)dD = pdf(lnD)d lnD
represents the same probabilities gives

pdf(D) = pdf(lnD)
d lnD

dD
=

1

D
pdf(lnD) ,

which is the form seen in Eq. (A1) of Campbell (1995), and is equivalent to Eq. (2) of
Ahmad et al. (2010). To express the log-normal distribution in terms of base 10 logarithms,
the same procedure plus the observation that d logD/dD = log e/D gives

pdf(D) =
log e

D
pdf(logD) =

1

(ln 10)D
pdf(logD) ,

which is the form seen in Eq. (1) of Shettle and Fenn (1979). Now µ and σ are the mean
and variance of logD. (Note that pdf(D) is defined for 0 < D < ∞, which corresponds to
−∞ < lnD < ∞ in Eq. (equation8).) Multiplying these probability distribution functions
by magnitudes (e.g., the total number of particles per cubic meter) scales them for use as
PSDs.

Log-normal distributions are commonly used to describe atmospheric aerosol size distri-
butions (e.g., Shettle and Fenn (1979)). The current NASA atmospheric correction algorithm
models aerosols as a sum of two log-normal distributions: one for small, continental (dust)
aerosols and one for large, marine (sea salt) aerosols (Ahmad et al. (2010)):

n(r) =
1

r

dN(r)

d ln r
=

2∑
i=1

Noi

rσi
√

2π
exp

[
−(ln r − µi)2

2σ2
i

]
. (9)
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Figure 5: Top panel: measured number size distributions for 18 classes or species of microbes.
Bottom panel: the sums of the microbial PSDs (solid line), and modeled PSDs for detritus,
minerals, and bubbles. Reproduced from Fig. 9 of Stramski et al. (2001) by permission of
the Optical Society of America under their Fair Use policy.
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Figure 6: Typical open-ocean aerosol distributions plotted as dN(r)/dr in the left panel
and as dN(r)/d log r in the right panel. The green curve is the contribution by continental
aerosols and the blue curve is the marine aerosols; the red curve is the total. The black
dashed lines show the slope of a Junge distribution.

The parameters Noi, µi, and σi, i = 1, 2 are adjusted to give the relative amounts of conti-
nental and marine aerosols, and the parameters also depend on the relative humidity. Figure
illustrates these aerosol distributions for a typical open-ocean mix of aerosol types and for
a relative humidity of 50%. The left panel plots the number PSD n(r) = dN(r)/dr and the
right panel plots the same information as dN(r)/d log r. In the left panel, the dashed line
shows the −4 slope of a Junge distribution (Eq. likesection6). In the right panel, the Junge
distribution is represented by a slope of −3 on the log r abscissa sale (Eq. likesection5). The
aerosol model of Eq. (equation9) uses particle radius r rather than diameter D because these
particle size distributions are used as input to Mie calculations of aerosol optical properties.

The log-normal distribution finds many applications beyond particle size distributions.
Campbell (1995) shows examples of log-normal distributions of chlorophyll concentrations,
normalized water-leaving radiances, the diffuse attenuation coefficient Kd(490), normalized
photosynthetic yields, and several other biological variables. In fields other than oceanog-
raphy, the log-normal distribution has been found to describe phenomena as diverse as the
distribution of income (excluding billioniares), daily rainfall amounts, the populations of
cities, and much more. Qualitative understanding of these observations can be obtained as
follows. If a random variable is the sum of other random variables, then the distribution
of the sum will be normal, regardless of the distribution of the individual variables. This is
known as the Central Limit Theorem. (See the page on Error Estimation in Monte Carlo
calculations for numerical examples.) If the total results from a product of random pro-
cesses, then the product will obey a log-normal distribution. This is because the logarithm
of a product is the sum of the logarithms, and the sum of the individual logarithms is then
normally distributed. Thus, for example, if the total chlorophyll concentration is the result
of a repeated daily fractional increase (daily growth rate) (e.g., the total Chl is the value at
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day 1 times 1.1 to get the value at day 2, time 1.1 again to get the value at day 3, ...), the
the total chlorophyll concentration will be log-normally distributed.

Comments on Units

Suppose you have some data Y (x) that you wish to model with a normal or Gaussian
distribution. Y might the the number, area, or volume of particles, and x is some measure
of their size. The mean and standard deviation of the data are m and s, respectively, and
Yt is the total “amount” of Y for all sizes (e.g., the total number of particles or their total
volume). Then the Gaussian model of the data would be

Y (x) =
Yt√
2πs

exp

[
−(x−m)2

2s2

]
. (10)

If x has units, say µm, then m and s have the same units. The argument of the exponential
is nondimensional, and ∫ ∞

−∞
Y (x)dx = Yt

since a Gaussian distribution integrates to 1.
Now suppose you wish to model the same data using a log-normal distribution. The idea

is that

Y (log x) =
Yt√
2πσ

exp

[
−(log x− µ)2

2σ2

]
, (11)

where now µ = logm and σ = log s are the parameters of the distribution. However,
this equation is not correct because you cannot take the logarithm of a dimensional quantity.
(Nor can you compute ex or sin(x) or any other such function unless x is a nondimensional
number.) However, you can compute log(ax) if a has units of 1 over the units of x, so that
ax is a nondimensional number. Thus, before using a log-normal distribution, you must
non-dimensionalize the size x. If x is in µm, then this can be done by dividing all values of
x by 1 µm, i.e. setting a = 1/1 µm. However, you could just as well normalize the x values
by dividing by 17.3 µm. Note that converting the x data values from, say, micrometers to
millimeters, or even to inches, also amounts to multiplying all x values by a scale factor a.
If x → ax, then m → am and s → as, and the exponential of the log-normal distribution
does not change. The log-normal distribution this then properly written as

Y [log(ax)] =
Yt√
2πσ

exp

[
−(log(ax)− µ)2

2σ2

]
, (12)

where now µ = log(am) and σ = log(as). Of course, if x is measured in microm-
eters and a = 1/1 µm, then nothing changes numerically in Eq. (likesubsection11) vs.
(likesubsection12), but it should be kept in mind when using equations like (equation8) or
(equation9) that the size measure D or r must be non-dimensional. This subtlety seems
never to be mentioned in the particle sizing literature, although the mathematicians have
commented on this; see Matta et al. (2011) and Finney (1977).
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Single-parameter measures of particle size

A PSD contains the full information about the sizes of particles in a sample. However, a
PSD is a function of size, and there is a human tendency to want to have a single number to
describe the particle sizes. Using a single number to describe a distribution may sometimes be
useful, but it often can be misleading or downright dangerous. As shown in the introduction,
it is not even possible to define a unique “size” for more than one sphere, let along a
distribution of non-spherical particles. A power-law distribution diverges as the size goes to
0, so such a distribution can be integrated only over a finite size range D1 to D2. Numbers
like the mean or median particle size can be computed for a distribution, but the “mean”
size will be different when based on a number distribution versus a volume distribution, for
example.

Perhaps the most commonly used single-number size parameter is the Sauter mean di-
ameter (SMD), which is defined by

SMD =

∫ D2

D1
D3n(D)dD∫ D2

D1
D2n(D)dD

.

Recalling Eqs. likesubsection3 and likesubsection4, the SMD can be written as SMD =
6Vt/At, where Vt and At are the total volume and area of the particles in the distribution.
For a single spherical particle of volume πD3/6 and area πD2, the SMD reduces to the
diameter of the sphere. Thus in words, the SMD is the diameter of a sphere that has the
same total volume to total area ratio as the particles in the distribution.

Figure figure7 shows the differences in the mode, median, mean, and Sauter mean diam-
eter for a log-normal probability distribution function,

pdf(x) =
1

xσ
√

2π
exp

[
−(lnx− µ)2

2σ2

]
,

with parameters µ = 1.0 and σ = 0.5. This illustrates that these measures of particle
“size” are in general all different. The Sauter mean diameter is larger than the others and
is determined most strongly by the largest particles of a distribution. If you are interested
in total volume or mass, then the SMD is a useful quantity. This is why the SMD is used in
sediment transport studies. On the other hand, if you are interested in the smallest particles,
then the mode or median is probably a better statistic to use. Other single-number measures
of a distribution have been developed for specific problems. Clearly, which single measure of
a size distribution might be most useful depends on the problem at hand.
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Figure 7: Differences in the mode, median, mean, and Sauter mean diameter for a log-normal
distribution with parameters µ = 1.0 and σ = 0.5.
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