
The previous page showed how to determine ray path lengths and scattering angles using
the beam attenuation c, the scattering phase function β̃, and a uniform U [0, 1] random
number generator. This page shows how to combine those two processes to create random
ray paths through an absorbing and scattering medium.

Ray Tracing

There is more than one way to simulate ray paths, and each will give the same answer.
However, some techniques can be numerically much more efficient than others. Indeed, a
reasonable approach to developing a Monte Carlo algorithm for a particular problem is to

1. first figure out how to numerically simulate a process as it occurs in nature, and

2. then figure out how to simulate another, perhaps artificial, process that will give the
same answer as the “natural” process, but with less computational time.

This page illustrates this two-step development process.
Consider first how rays propagate through a medium. Loosely speaking, a ray travels

until it interacts with a particle, e.g. a molecule of water or chlorophyll. It is then either
absorbed by the particle and disappears, or it is scattered into a new direction and continues
on its way until in interacts with another particle.

Recall the albedo of single scattering, ωo = b/c. If there is no absorption, b = c and
ωo = 1. If there is no scattering, b = 0 and ωo = 0. ωo = b/c thus can be interpreted as the
probability of ray survival in any particular interaction. When a ray encounters a particle,
we can randomly decide if the ray is to be absorbed or scattered as follows:

1. Draw a random number r from a U [0, 1] distribution.

2. Compare r with ωo.

• If r ≤ ωo, then the ray is scattered.

• If r > ωo, then the ray is absorbed.

If the ray is absorbed, tracing stops and a new ray is emitted from the source and tracing
begins anew. If the ray is scattered, two new U [0, 1] random numbers are drawn and used to
determine new polar and azimuthal scattering directions ψ and χ as shown on the previous
page. Another random number is used along with c to determine the distance traveled before
another interaction.

Figure 1 illustrates this process for two rays, which also introduces the geometry to be
used in numerical simulations below. A source emits a collimated beam of rays, which are
then recorded by an annular, ring, or ”bullseye” detector some distance away. The red ray
is emitted by the source, undergoes one scattering, and is then absorbed by a particle. The
green ray is emitted, undergoes two scatterings, and is recorded by a detector.

This process mimics what happens in nature. Call this ”Type 1” ray tracing (there are
no standard names for ways of tracing rays). Note that all of the computations used to trace
the absorbed ray are wasted because the ray never reached the detector. Nature can afford
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Figure 1: 1. Illustration of Type 1 ray tracing. The red ray is absorbed and the green one
reaches the target.

Figure 2: 2. Illustration of Type 2 ray tracing in green and Type 3 in red.

to trace innumerable rays and waste some by absorption, but that is not advisable for most
numerical simulations. We therefore seek other ways to trace rays.

The previous page showed that the mean free path or average distance between interac-
tions with the medium is 1/c. These interactions can result in either absorption or scattering
of the ray, as just described. Rather than tracing one ray at a time as nature does, consider
a source emitting “bundles” of many rays (often called “photon packets” in the literature).
Then view each interaction as having a fraction 1 − ωo of the rays in the bundle being ab-
sorbed, and the remaining fraction ωo being scattered, all in the same direction. Let the
bundle be emitted with an initial weight of w = 1, which can represent one unit of energy,
power, or some number of rays. At each interaction, the current weight w is multiplied by
ωo to account for the loss of energy or number of rays by absorption (that is, a fraction ωo
continues onward). The scattered bundle then carries a reduced weight. If the ray bundle
reaches the target, the current weight w is tallied. Another bundle is then emitted from the
source and traced. This tracing process, which we’ll call ”Type 2,” is illustrated by the green
ray track in Fig. figure2. After two scatterings, as illustrated, the detected ray bundle has
weight w = ω2

o .
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A third ray-tracing process can be envisioned. The mean distance traveled between
scattering events is 1/b. We can thus use 1/b and a random number to determine the
distance between scattering interactions, and the initial weight of w = 1 is not changed at
each interaction because all rays in the bundle are viewed as being scattered. Then, if the
ray bundle reaches the target, absorption is treated as a continuous process occurring along
the entire ray path. Assuming homogeneous water, the final weight tallied is then e(−`a),
where ` is the total path length in meters and a is the absorption coefficient. The red track
in Fig. figure2 illustrates this ”Type 3” ray tracing. The red track shows a total path length
of `1 + `2 + `3, so the final weight is e−[(`1+`2+`3)a].

The two tracks in Fig. figure2 are drawn as though each track were generated by exactly
the same sequence of random numbers. Because 1/b > 1/c, the individual Type 3 ray paths
will be greater than the Type 2 paths. The scattering angles are the same. Thus these two
tracing types clearly lead to different results, ray bundle by ray bundle. However, numerical
simulation of many ray bundles shows all three of these ray tracing types yields the same
distribution of energy at the detector.

To summarize, the three types of ray tracing considered here are

Type 1: Individual rays are tracked, and rays can be absorbed.

Type 2: Ray bundles are tracked, with a bundle weight being multipled by ωo at each
interaction.

Type 3: Ray bundles are tracked, with track lengths determined by the mean free path for
scattering, no weighting at scattering events, and absorption treated as a continuous
process based on total path length.

Numerical Comparison of Tracking Types

To illustrate the results obtained for different ways of tracking rays, a Monte Carlo code
was written to simulate the energy received by an annular target as illustrated in Figs.
figure1 and figure2. For the simulations shown here, the IOPs were defined by a = 0.2 m−1,
b = 0.8 m−1, and a Fournier-Forand phase function with parameter values (n, µ) = (index
of refraction, slope of Junge distribution) chosen to give a good fit to the Petzold average
particle phase function. Thus ωo = 0.8, and optical distance τ is numerically the same as
geometrical distance ` in meters. A run was made with 106 rays being sent from the source
and using Type 1 ray tracing. rays were traced until they were absorbed. Figure figure3
shows some of the resulting statistics.

The red histogram shows the percent of rays that traveled an optical distance τ1 ≤ τ ≤ τ2
between interactions, for a bin size of τ2 − τ1 = 1. The theoretically expected fraction of
rays traveling an optical distance between τ1 and τ2 between interactions is∫ τ2

τ1

e−τdτ = e−τ1 − e−τ2 (1)

The red dots in the figure are the expected values given by this formula. The shortest ray
path length between interactions was τ = 1.192 × 10−7 and the longest was 16.69. The blue
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histogram shows the distribution of total distances traveled until the rays were absorbed.
Thus the value for the first bar shows that about 18% of the rays were absorbed after going a
total optical distance between 0 and 1. Note that this distance can represent more than one
interaction, i.e., a ray being scattered one or more times before being absorbed. Both the red
and the blue histograms sum to 100%. As shown on the previous page, the mean distance
traveled between interactions is τ = 1, or 1/c in meters. For this particular simulation
the actual average was τ = 0.9974 (or 0.9974 m for these IOPs). The small difference is
statistical noise resulting from the finite sample size of the numerical simulation. Likewise,
the average distance traveled until the rays are absorbed is 1/a. For the present case of
a = 0.2 m−1 this gives 5 m. The average for this simulation was 4.9949 m. Since c = 1 m−1

for this simulation, another way to view this is that the rays were on average scattered four
times before being absorbed on the fifth interaction.

Figure 3: Example distributions of the optical distances between interactions and of the
total distances traveled before absorption for Type 1 ray tracing.

We next compare results for the three different ways of tracking rays. Because oceanic
phase functions scatter much more light at small scattering angles than at large angles, most
rays that are scattered just a few times will hit the detector near its center. To even out
the numbers of rays (or power) detected by each ring, an annular target was defined with a
logarithmic spacing for the radii of the detector rings. A logarithmic spacing is often used
in instruments so that each detector ring receives roughly equal amounts of power, which
reduces the dynamic range needed for the instrument design. The detector simulated here
had Nrings = 10 rings with the smallest ring radius being rmin = 0.1 and the largest being
rmax = 10. This detector is placed in a target plane some distance zT from the source and
centered on the optical axis of the source, as shown in Figs. figure1 and figure2. The rays
crossing the detector plane at some distance r from the detector center are tallied in bins as
follows:

Bin 0: Unscattered rays that hit the detector at r = 0.
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Bin 1: Scattered rays that hit the target plane inside the first detector ring, i.e. at 0 < r <
rmin.

Bins 2, ..., Nrings + 1: rays that hit detector rings 1 to Nrings.

Bin Nrings + 2: rays that hit the detector plane outside the outer ring, i.e. at r > rmax.

Simulations were made with Nemit = 106 rays (for Type 1) or ray bundles (Types 2 and 3)
emitted from the collimated source. Figure figure4 shows the distribution of rays or bundles
received anywhere in the detector plane as a function of the number of scatterings, for the
three types of tracing and for target plane distances of zT = 5 and 15. The left panel shows
that for zT = 5 one or two percent of rays (depending on the tracing type) reach the target
plane without being scattered. Most rays are scattered 3 or 4 times, and very few rays are
scattered more than 10 times. The right panel shows that for zT = 15, almost no rays reach
the target plane unscattered, and most undergo 5 to 25 scatterings, with a peak around 10
or 15, depending on the way the rays are traced. For Type 1 ray tracing, almost no rays
are scattered more than 30 times. Note that the probablity of surviving 30 scatterings is
ω30
o = 0.0012. For tracing Types 2 and 3, which never have ray bundles absorbed, there are

broad tails in the number of scatterings, although for Type 2 a bundle being scattered 40
times has an almost negligible weight of w = ω40

o = 0.00013.

Figure 4: Distribution of rays reaching the target plane as a function of the number of
scatterings, for the three scattering types and two target plane distances.

The left panel of Fig. figure5 shows the intersection points of the rays reaching a τ =
10 × 10 area of the target plane for the first 104 emitted rays, tracing Type 1, and the
target plane at zT = 5. Note that of the 104 emitted rays, only 2973 reached the target
plane (of which 2966 are in the area plotted). This is less than 30% of the rays making
a contribution to the answer of how much power is detected; i.e., 70% of the calculations
were wasted. The ray-intersection dots are color-coded to show the number of times each
plotted point was scattered. The two black circles show off-axis angles of 30◦ and 60◦. Very
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few rays were scattered more than about 30◦ off of the optical axis. The right-hand panel
shows the distributions of the rays reaching the target plane by number of scatterings and
total distance traveled. Every ray must of course travel a distance of at least τ = 5 before
reaching the target plane, and most rays were scattered several times.

Figure 5: Distribution of rays reaching the target plane at zT = 5 for 104 emitted rays
and Type 1 tracing. The left panel shows the spatial distribution of points where the rays
intersected the target plane. The two black circles are drawn at 30◦ and 60◦ angles off of
the optical axis. The right panel shows the distributions of number of scatterings and total
distance traveled.

Figure figure6 shows the same distributions for Type 2 scattering. Note than now 93%
of the emitted ray bundles eventually intersect the target plane. Only 7% of the emitted
rays were wasted. Those rays ended up being scattered into directions away from the target
plane (either by backscattering or by multiple large-angle forward scatterings). Figure figure7
shows the results for Type 3 tracing. The distributions are similar to those for Type 2, but
with over 94% of the rays reaching the target plane.

Figures figure8-figure10 show the corresponding results when the target plane is at zT =
15. Now, for Type 1 tracing, only 179 of 104 emitted rays ever reached the target plane.
Over 98% of the ray-tracing calculations were wasted! Note also that there is obvious
statistical noise in the distributions of the right panel, due to the small number of rays
used to computed the statistics. For Types 2 and 3 about 71% and 82%, respectively, of the
emitted rays eventually reach the target plane. The statistical noise is now much smaller
(but still noticeable) because of the larger number of ray bundles.

The total optical distance distributions for Types 2 and 3 show broad tails. In both
cases, fewer than one fourth of the rays made it to the target plane after traveling a total
distance of τ = 15–16. About 30% of the rays underwent 30 or more scatterings and traveled
a distance of τ ≥ 30. These broad tails illustrate the phenomenon of pulse stretching
in time-dependent problems. If we think of all Nemit rays being emitted simultaneously,
then the longer distances traveled correspond directly to later arrival times at the target.
Pulse stretching is an important limiting factor in time-dependent applications such as lidar
bathymetry or communications with high-frequency light pulses.
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Figure 6: Same as Fig. figure5 but for Type 2 tracing.

Figure 7: Same as Fig. figure5 but for Type 3 tracing.
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Figure 8: Same as Fig. figure5 but for a target plane at zT = 15. The black ring in the left
panel is 30◦ off of the optical axis.

Figure 9: Same as Fig. figure8 but for Type 2 tracing.
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Figure 10: Same as Fig. figure8 but for type 3 tracing.

Figure figure11 shows the distributions of numbers of rays at the target plane and the
corresponding power (or energy) for the three tracing types and the detector at zT = 5. The
left panel shows the distributions as a function of the detector ring radii, and the right panel
is the same information as a function of the bin number defined above. Recall that the first
abscissa point is unscattered rays, the second is scattered rays inside the first detector ring,
and the last plotted point is for rays outside the last detector ring. The solid-line histogram
represents the 10 detector rings for rmin = 0.1 < r < rmax = 10.

There are several things to notice in this figure. First, the distributions of the numbers of
rays (open circles) are different for the three tracing types. For Type 1, the distribution of the
number of rays is the same as the power distribution because the rays all retain their initial
weight of w = 1. Thus power detected is simply the number of rays detected. For Types 2
and 3, more rays are detected, but each is weighted less to account for absorption along the
way. Finally—and most importantly—the power distributions for these three tracing types
are identical to within a small amount of statistical noise, which is not visible in these plots.

Figure figure12 shows the power distributions for the detector at zT = 15 but only
Nemit = 104 rays emitted. There are obvious differences in the distributions for the three
tracing types. However, if Nemit = 106 rays are traced, as in Fig. figure13 these differences
almost disappear. This indicates that the three ways to trace rays all give identical predictions
of the detected power, to within some amount of statistical noise, which can be reduced by
tracing more rays.

However, the computation time required by the three tracing types can vary greatly. Recall
from Fig. figure5 that about 30% of the rays reached the target plane at zT = 5 for Type
1 tracing, but that over 90% reached the target plane for Types 2 and 3 (Figs. figure6 and
figure7). Thus, if we require a certain number of detected rays to achieve some desired level
of statistical noise, we would have to emit and trace over three times as many rays for Type
1 tracing (hence three times the computer time) as for Type 2 or 3. For the detector at
zT = 15 and Type 1 tracing, fewer than 2% of the emitted rays reached the target plane
(Fig. figure8), whereas about 80% of the rays reached the target plane for Types 2 and 3
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Figure 11: Distributions of number of rays (open circles) and power (histograms) for the
target plane at zT = 5, for the three types of tracing. The left panel shows the distributions
as a function of radius from the optical axis. The right panel displays the same information
as a function of the bin number.

(Figs. figure9 and figure10). Getting the same number of rays on target would thus require
emitting over 40 times as many rays (hence 40 times the computation time) for Type 1 as
for Types 2 or 3.

We have now shown that several ways of tracing rays can be devised and that each gives
the same distribution of power or energy at a detector some distance away from the source.
However, an intelligent choice of the ray tracing algorithm can greatly reduce the needed
computations. Moreover, the computation differences depend on the particular problem,
e.g., on detector distance from the source as shown here (or on the IOPs, not shown here).
However, we can do still more to reduce computation times, which leads us to the next topic
of variance reduction techniques.
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Figure 12: Energy distributions for zT = 15 and Nemit = 104, for the three tracing types.
There are obvious differences in the distributions.

Figure 13: Energy distributions for zT = 15 and Nemit = 106, for the three tracing types.
The differences seen in Fig. figure12 have almost disappeared.
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