
This page shows how to estimate the errors in Monte Carlo simulations. General results
from probability theory are illustrated with numerical examples.

To be specific, suppose that we need to estimate the fraction of power emitted by a light
source that will be received by a detector. The answer of course depends on the water IOPs;
the size, orientation, and location of the detector relative to the light source; the angular
distribution of the emitted light; and perhaps on other things like boundary surfaces that
can reflect or absorb light scattered onto the boundary. The numerical results to be shown
below use the source and detector geometry shown in Fig. figure1. The source emits a
collimated bundle of rays toward a detector that is τ = 5 optical path lengths away and is
0.1 optical path lengths in diameter. The water IOPs have a = 0.2 m−1 and b = 0.8 m−1 so
that c = 1 m−1 and one meter is one optical path length. The albedo of single scattering
is ωo = 0.8. The scattering phase function is a Henyey-Greenstein phase function with a
scattering-angle mean cosine of g = 0.8.

Figure 1: Source and detector geometry used for numerical simulations.

In the simulations, N rays will be emitted from the source, each with an initial weight
of w = 1. Most of those rays will miss the detector, as illustrated by the blue arrows in Fig.
figure1. However, some rays will hit the detector, as illustrated by the red arrows, at which
time their current weight will be tallied to the accumulating total weight wd received by the
detector. After all rays have been traced, the the Monte Carlo estimate of the fraction of
emitted power received by the detector is simply fd = wd/N .

If we do only one simulation tracing, say, N = 104 ray bundles, then the resulting estimate
of fd is all we have. In particular, we have no estimate of the statistical error in the estimated
fd.

Probability Theory

To develop a quantitative error estimate for the result of a Monte Carlo simulation, we
begin with a review of some results from basic probability theory. Recalling the notation
introduced on the Monte Carlo Introduction page, let pW (w) be the probability density
function (pdf) for random variable W . Capital W represents the random variable, e.g. the
ray bundle weight received by the detector, and lower case w represents a specific value of
W , e.g., w = 0.72. In the present example, pW (w) is the pdf that a ray strikes the detector

1



with a weight w, 0 ≤ w ≤ 1. rays that miss the detector do not contribute to accumulating
weight or power received by the detector and do not enter into the calculations below; they
are simply wasted computer time. Note that we have no idea what mathematical form pW (w)
has: it results from a complicated sequence of randomly determined ray path lengths and
scattering angles.

For any continuous pdf pW (w) the expected or mean value of W is defined as

mean(W ) ≡ µ ≡ E{W} =

∫
w pW (w) dw , (1)

where E denotes expected value and the integral is over all values for which W is defined. If
the random variable is discrete, the integral is replaced by a sum over all allowed values of
W . Similarly, the variance of W is defined as

var(W ) ≡ σ2 ≡ E{(W − µ)2} =

∫
(w − µ)2 pW (w) dw = E{W 2} − [E{W}]2 .

Note that if c is a constant, then

E{cW} = c E{W} and var(cW ) = c2 var(W ) .

Greek letters µ and σ2 are used to denote the true or population mean and variance of a pdf.
Suppose that Nd ray bundles actually reach the detector. The total weight received by

the detector is then given by the sum of these randomly determined weights:

SNd
=

Nd∑
i=1

wd(i) ,

where wd(i) is the weight of ray bundle i when it reached the detector.
Each of the N ray bundles emitted by the source and traced to completion is independent

of the others. In particular, a different sequence of random numbers is used to determine
the path lengths and scattering angles for each emitted bundle. Moreover, the underlying
pdfs for ray path length and scattering angles (i.e., the IOPs) are the same for each bundle.
The random variables are then said to be independent and identically distributed (iid), and
SNd

is said to be a random sample of size Nd of random variable W .
The linearity of the expectation (i.e., the integral of a sum is the sum of the integrals)

means that for iid random variables such as W ,

E{SNd
} = Nd E{W} = Nd µ and var(SNd

) = Nd var(W ) = Nd σ
2 . (2)

In the Monte Carlo simulation, the sample mean, i.e. the estimate of the average detected
weight obtained by from the Nd detected ray bundles is

mNd
≡ 1

Nd

SNd
=

1

Nd

Nd∑
i=1

wd(i) .

Equation (likesection2) now gives two extremely important results. First,

E{mNd
} =

1

Nd

E{SNd
} = µ . (3)
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That is, the expectation of the sample mean mNd
is equal to the true mean µ. The sample

mean is then said to be an unbiased estimator of the true mean of the pdf. Second,

var(mNd
) = var(

1

Nd

SNd
) =

1

N2
d

var(SNd
) =

σ2

Nd

. (4)

Thus, the variance of the sample mean goes to zero as Nd →∞, that is, as more and more
ray bundles are detected. In other words, the Monte Carlo estimate of the average power
received by the detector is guaranteed to give a result that can be made arbitrarily close
to the correct result if enough rays are detected. This result is known as the law of large
numbers. Again, you can emit and trace all the rays you want, but if they don’t hit the
detector, they don’t count.

It is often convenient to think in terms of the standard deviation, e.g., when plotting
data and showing the spread of values. The standard deviation of the error in mNd

is

sNd
=
√
var(mNd

) =
σ√
Nd

. (5)

The dependence of the standard deviation of the estimate on 1/
√
Nd is a very general and

important result. However, this “approach to the correct value” is very slow. If we want to
reduce the standard deviation of the error in the estimated average power received by the de-
tector by a factor of 10, we must detect 100 times as many rays. That can be computationally
very expensive.

It is to be emphasized that result (likesection4) that the variance of a sample mean equals
the true variance divided by the sample size holds for any situation for which the individual
samples are independent and identically distributed random variables.

Note, of course, that if we knew the pdf for the received power, pW (w), then we could
simply evaluate Eq. (likesection1) to get the desired true mean µ, and no Monte Carlo
simulation would be required.

Finally, it must be remembered that the discussion here assumes that ”all else is the
same” when considering the number of detected rays. For example, we emit and trace more
rays without changing the physics of the simulation. The page on importance sampling
presents ways to increase the number of detected rays and thereby reduce the variance, but
with a change in the physics that sometimes may invalidate the simple 1/

√
Nd dependence.

Numerical Examples

Numerical simulations were performed for the geometry and conditions described for Fig.
figure1. For these simulations, tracing type 1 of the previous page was used. That is, ray
bundles were traced until they either hit the target (still with weight w = 1) or were absorbed.
For a given number N of emitted ray bundles, various numbers Nrun of independent runs
were done. That is, N rays were traced and the number Nd of detected ray bundles and their
weights were tallied for each run. The fraction of emitted power received by the detector
was then computed by the total detected weight for the run divided by N . Then another
run was made with everything the same except that a different sequence of random numbers
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was used (i.e., each run was started with a different seed for the U [0, 1] random number
generator used to determine path lengths and scattering angles).

The first set of simulations used N = 10, 000 emitted ray bundles for each run, with
Nrun = 10, 100, 1000, and 10,000 runs being made. Figure figure2 shows the distributions of
the sample means mNd

and other information for these four sets of run numbers. The upper
left panel of the figure is for only Nrun = 10 runs, or trials, or simulations. In this panel, the
histogram shows that one run, or 0.1 of the total number of runs, gave an estimated fraction
between 0.0088 and 0.0090 of the emitted power; two runs, or 0.2 of the total, gave a fraction
between 0.0104 and 0.0106, and so on. As the number of runs increases, the estimates of the
fraction of power received range from slightly less than 0.008 to slightly more than 0.014,
with most estimates centering somewhere near 0.0108.

Figure 2: Estimates of the fraction of detected power for four sets of runs with N = 104

emitted rays in each run.

As the number of runs increases, something very remarkable happens: the distribution of
the fraction of the emitted power appears to be approaching a Gaussian or normal shape, even
though the underlying pdf pW (w) is certainly not Gaussian. This distribution can be thought
of as the distribution of errors in the estimated mean of the distribution, or the distribution
of E{mNd

−µ}, where µ is the unknown true mean of the distribution pW (w). This approach
to a Gaussian distribution is a consequence of the central limit theorem. The central limit
theorem states that the sum of a large number of independently distributed random variables
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with finite means and variances is approximately normally distributed regardless of what
the distribution of the random variable itself may be. This is one of the most profound
results in probability theory. Indeed, it explains why so many natural phenomena tend to
have a Gaussian shape. Phenomena as disparate as average student exam scores, noise in
electrical circuits, daily water usage in a city, or the fraction of people who develop cancer
can all result from sums of many individual contributions. Such sums then tend toward a
Gaussian distribution as the number of individual contributions increases. The theorem was
first proved for a specific pdf in 1733, but it was not proven to hold for all pdfs (having
finite means and variances) until the early 1900’s. (By the way, in spite of what you see in
the tabloid press, there is nothing in probability theory called “the law of averages.” The
central limit theorem is maybe the closest thing to the often involked buy mythical “law of
averages.”)

Figure figure3 shows the corresponding results for series of Nrun = 10, 100, 1000, and
10,000 runs being made, but with each run now having N = 100, 000 emitted rays. Now
the spread in the estimated values is much less, from slightly less than 0.010 to about 0.012,
again centering somewhere around 0.0108. Again, we see the approach to a Gaussian shape
as more and more runs are made, but the Gaussian has a narrower width, i.e. less variance
about the mean. The standard deviation of the sample estimates of the mean is usually
called the “standard error of the mean.”

The lower right panel of Fig. figure2 shows that the sample standard deviation for the
case of 10,000 runs each with 10,000 emitted rays is sNd

= 1.186 · 10−3 and the average
number of detected rays is Nd = 107.9. The corresponding panel of Fig. figure3 shows
sNd

= 3.718 · 10−4 and Nd = 1080.5. The ratio of these sample standard deviations is

sNd
(Nd = 107.9)

sNd
(Nd = 1080.5)

=
1.186 · 10−3

3.718 · 10−4
= 3.19 .

The corresponding ratio of σ√
Nd

values is

σ√
Nd=107.9

σ√
Nd=1080.5

=

√
1080.5

107.5
= 3.16 .

This nicely illustrates the dependence of the sample standard deviation, or the standard error
of the mean, on the square root of the number of ray bundles detected, just as predicted by
Eq. (likesection5).

Error Estimation

In the present example of the fraction of emitted power received by a detector, the central
limit theorem guarantees that the errors in the fraction of received power computed by many
Monte Carlo runs approaches a Gaussian. We can thus use all of the results for Gaussian,
or normal, probability distributions to estimate the errors in the Monte Carlo results.

It is often desirable to know the probability that the computed sample mean mNd
is

within some prechosen amount, say 1 standard deviation, of the (unknown) true mean µ.
Conversely, we may want to compute the error range so that the sample mean is within
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Figure 3: Estimates of the fraction of detected power for four sets of runs with N = 105

emitted rays in each run.
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that error range of the true mean with some prechosen probability. Such questions can be
answered starting with the statement

Prob{µ− β sNd
≤ mNd

≤ µ+ β sNd
} = 1− α .

This equation states that the probability is 1 − α that the sample mean is within a range
β sNd

of the true mean µ; β is a fraction of the sample standard deviation sNd
. In other

words, the probability is 1− α that µ = mNd
± β sNd

. The central limit theorem guarantees
that, if the sample size is large enough, the deviation of the sample mean from the true
mean, mNd

− µ, is approximately normally distributed:

pdf(mNd
− µ) ≈ 1√

2πsNd

exp

{
−(mNd

− µ)2

2s2Nd

}
. (6)

Assuming that we have enough samples to get a good approximation to the normal distri-
bution, the probability that mNd

is greater than µ by an amount β sNd
is then

Prob{mNd
− µ ≥ β sNd

} =
1√

2πsNd

∫ ∞
βsNd

exp

{
− t2

2s2Nd

}
dt .

Letting y = t/sNd
gives

Prob{mNd
− µ ≥ β sNd

} =
1√
2π

∫ ∞
β

exp

{
−y

2

2

}
dy ≡ Q(β) . (7)

The Q(β) integral in the last equation cannot be performed analytically, but it is tabulated
in probability texts, and software packages such as MATLAB and IDL have routines to
compute it. In to also common to find tables and subroutines for

Φ(β) ≡ 1√
2π

∫ β

−∞
exp

{
−y

2

2

}
dy .

Note that Q(β) + Φ(β) = 1.
Let us now apply Eq. (likesection7) to various examples. We first compute the probability

that the sample mean is within one standard deviation of the true mean. Letting β = 1,
we compute the probability α/2 that mNd

− µ lies in the “right-hand tail” of the normal
distribution beyond β = 1. This is the area shaded in red in Fig. figure4.

This probability is

Prob{mNd
− µ ≥ sNd

} = Q(1.0) =
α

2
.

Q(1) ≈ 0.1587, so α = 2Q(β) = 0.3174. The Gaussian distribution is symmetric about the
mean, so Prob{mNd

− µ ≤ −sNd
} that mNd

− µ lies in the left-hand (green-shaded) tail of
the distribution also equals 0.1587. Thus the probability that mNd

−µ does not lie in either
tail of the distribution, i.e. that µ ≤ mNd

± sNd
is 1− α/2− α/2 = 0.6826.

For the simulations of Fig. figure2, the lower right panel shows values of mNd
= 0.0179

and sNd
= 1.186 · 10−3. Thus there is a roughly 68% chance that the true fraction of

received power is within the range 0.01079 ± 1.186 · 10−3. For the corresponding run of
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Figure 4: The Gaussian or normal distribution of Eq. likesection6
.

Fig. figure3, which traced ten times as many ray bundles, the corresponding numbers are
0.01081 ± 3.718 · 10−4. Thus, in the last set of simulations, we are 68% certain that the
sample mean is within about ±3.4% of the true mean.

Suppose we need the probability that we are within, say, 5% of the correct value. For
the lower right simulation of Fig. figure3, 0.05 of 0.01081 is about 0.00054. From 0.00054 =
β3.178 · 10−4 we get β = 1.454. Q(1.454) = 0.0729 = α/2, so the probability of being within
5% is 1 − α = 0.854. If being 85% confident that the Monte Carlo estimate of the mean is
within 5% of the true value is adequate for your application, then you are done. If you need
to be 95% confident that you are within 5% of correct, then you need to continue tracing
rays until you get enough rays on the target to reduce the sample variance to a value small
enough to achieve the desired 95% confidence.

As a final example, we might ask how big is the error so that we can say that we are
within that range with 90% certainly. We now set 1− α = 0.9, and solve

Q(β) =
α

2
= 0.05

Again, the inverse of Q(β) is also tabulated. This equation gives β = 1.645. From the
last panel of Fig. figure3 we then get βsNd

= 1.645 × 3.718 · 10−4 = 6.12 · 10−4, so that
µ = 0.01081± 6.12 · 10−4 with 90% confidence.

As a final caveat to this section, keep in mind that the central limit theorem says that the
error becomes Gaussian as the number of samples, Nd in the present examples, becomes very
large. How large is large enough depends on the particular problem and the user’s accuracy
requirement. In the present examples, 10,000 runs each with 10,000 or more emitted rays,
resulting in 100 or more detected rays for each run, gives distributions that visually appear
close to Gaussian (the lower right panels of the preceding two figures). There are various
ways to quantify how close a data distribution is to a Gaussian, but that is a topic for
somewhere else. Just do a search on ”normality tests.”
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