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RADIANCE DISTRIBUTION AS A FUNCTION OF
DEPTH IN AN UNDERWATER ENVIRONMENT

BY

~ JOHN E. TYLER

ABSTRACT

From the physical point of view the spatial distribution of radiance at various depths underwater
provides by far the most useful description of the light field. From detailed radiance distribution
data of this kind it is possible to obtain many of the important optical constants of the water and
to make predictions regarding the penetration of light through water. For the purpose of checking
theoretical relationships, and of designing and checking instrumentation, and for many other
purposes, it is not important whether the water studied is fresh or salt, turbid or clear, since these
parameters influence only the magnitudes of the quantities and constants involved.

In this investigation it was important that the water sample be deep and homogeneous through-
out, and that the band width of radiation employed be narrow and consistent with depth. A de-
tailed description of the experimental location establishes qualitatively or quantitatively the
influence of various factors such as water depth, sky conditions, water surface conditions, water
homogeneity, etc., on the data. Tables of radiance distribution data are given for seven depth
stations under clear sunny conditions and for five depth stations under overcast conditions. The
treatment of the original data to eliminate the effects of ambient light-level changes, changes in
the position of the sun, etc., and to obtain tables based on a single sun altitude is discussed in
detail.

The limiting shape of the radiance distribution, predicted by other workers and referred to here
as the asymptotic radiance distribution, is discussed and tables of radiance K values are given.
These latter data can be used to follow the changes in shape of the radiance distribution and to
extrapolate these changes to even greater depths.

INTRODUCTION

Durine THE decade from 1935 to 1945 there seems to have been -considerable inter-
est in the angular distribution of natural light underwater. Ingenious measuring
instruments were devised, including the “shadowing-screen’” photometer described
by Pettersson (1938) and also by J ohnson and Liljequist (1938), and the Gershun
tube photometer (Gershun, 1939) which directly limited the solid angle of accep-
tance. The objective of the work during that period seems to have been largely
exploratory, although a theoretical treatment based on isotropic scattering was
published by Poole (1945). Observations made on clear sunny days were compared
with those on overcast days. Observations were also made at various depths and
through various color filters. The light field was explored in a vertical plane in the
sun’s direction and in the vertical plane at right angles to the sun’s direction. In
addition, both Johnson and Liljequist (1938) and Whitney (1941a, b) explored the
light field with azimuth sweeps taken at various angles from the zenith. It was
observed that the angular distribution pattern of the natural light field changed in
shape with depth, and it was surmised that at some unknown depth an equilibrium
shape would be reached. It was also noted that the direction of the “bright”’ spot
in the underwater light field tended to approach the zenith as depth was increased.

Although earlier data were adequate for the purpose for which they were intended,
they do not now permit detailed investigations of the submarine light field or the
computation of water constants. The resolving power of the instruments used was
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never better than 15° (this refers to the apex angle of the circular cone of collection).
Large solid angles of collection average too much information, especially in the
direction of the sun, and tend to broaden the shape of the distribution diagram in
that direction and at the same time tend to lower the apparent value of the peak
radiance. '

The data from the various publications cannot be combined to yield a single de-
seription of the light field because of differences in geographical location or instru-
mentation details (for example in the selection of filters and photo cells). The papers
individually have insufficient information on the homogeneity of the water sample
that was being measured, and, for computational purposes, have insufficient data
points covering the radiance of the submarine light field.

The importance of the radiance distribution of the natural underwater light field
as a primary means for documenting the optical properties of large bodies of water
was first recognized by S. Q. Duntley in 1949 while he was conducting research on
visibility problems in scattering-absorbing media. At that time Dr. Duntley ini-
tiated a program of instrument development and study which has been continued
to the present time. . , ; ,

Some of the theoretical work accomplished by this program has been published
by Duntley (1952) and Preisendorfer (1957a) and some is being brought to the
attention of the Optical Society of America by Preisendorfer (1958, ¢). The develop-
ment of instrumentation for the detailed measurement of radiance distribution was
first described by Duntley et al. (1955) and the program of work in progress at that
time was discussed by Tyler (1955). Following the summer of 1956, major design
changes were made in the instrumentation and in the spring of 1957 field operations
were conducted in deep water at the United States Navy Electronics Laboratory
Calibration Station on Lake Pend Oreille in northern Idaho.

The objective of the 1957 field work was to obtain detailed data on radiance dis- .
tribution as a function of depth in homogeneous water under “clear sunny sky’ and
“gyercast sky” lighting conditions. Since the work was expected to provide new
data with which to test the theory of radiative transfer through a hydrosol, measure-
ments were confined within a narrow wavelength band.
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PERTINENT DESCRIPTION OF LAKE PEND OREILLE

Lake Pend Oreille is in many ways ideally situated for underwater optical investi-
gations. The field station is a barge moored at the south end of the lake about 2
miles from the village of Bayview and about half a mile from the nearest shore line.
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Cape Horn Peak to the north rises 16.5° above the horizon, and peaks of the western
edge of the Bitterroot Mountains block out, at most, 12.5° of the sky to the south.
To the east and west the sky line is much lower than this. Although the effect of
the sky line on the submarine light field is not yet known, it is presumed to be small
owing to Fresnel reflection at these high angles of incidence, and also owing to the
fact that refraction reduces the angular subtense of the sky line so that the 16.5°
between sky line and horizontal becomes only 2.7° in the underwater scene.

The major inlet of Lake Pend Oreille is Clark Fork some 20 miles to the north of
the station and practically in line with the Pend Oreille River, which is the major
outlet. Thus the largest source of particulate matter has little effect on the water
near the station. The eleven streams and creeks along the south and east shore line
which were examined at the time of the experiment were all carrying clear water
from-melting snow over streambeds of clean boulders.

The lack of major currents in the lake, the somewhat stagnant location of the
station, and the absence of silt-laden drainage into the southern end of the lake all
helped to minimize the possibility of stratification or inhomogeneity in the water.

DESCRIPTION OF EXPERIMENTAL SET-UP

The Pend Oreille Calibration Station is a two-story, 40- by 40-foot barge floated
on T6 pontoons and held in place by mooring cables designed to minimize yaw. The
siding, at the time of the experiment, was painted light green and as a result, the
barge, at noon, exhibited high positive contrast as seen from the instrument. The
new underwater photometer was suspended from a single supporting cable at the
end of a 30-foot boom on the south side of the building. The inboard end of the boom
was fastened to the barge near the water line and the outboard end was about 6 to 8
feet above the water. The instrument was thus 30 feet or more from the barge at all
times. The maximum horizontal angles subtended by the barge ‘at the point of im-
mersion were 45.5° to the east, 8.5° to the west, and about 33.7° in the vertical
direction. From a point below the surface the barge subtended a vertical angle of
about 10° at the instrument, and appears in the data between tilt angles of 38° and
48°. The image of the barge and the submarine shadow created by the barge have a
noticeable effect on the natural-light field near the surface and a detectable effect
even at the deeper stations. The depth of water below the station is 750 feet which
assured the absence of bottom reflectance effects in the measurements.

INSTRUMENTATION

All of the radiance distribution data presented herein were taken with the under-
water photometer shown in plates 1 and 2. This instrument was suspended on a
single cable and powered by a 31-conductor electric cable looped into the underside
at the vertical axis of rotation as shown in plate 3. The instrument was thus free
to rotate around a vertical axis. Rotation about this axis was controlled by means
of a gyrosyn compass assembly in the azimuth-position control box with input con-
trol and gyro repeater on the main control panel. The error signal resulting from an
azimuth mismatch between the control transformer and the gyro heading was used
to drive a propeller that rotated so as to minimize the error signal. With this mecha-~
nism it-was possible to maintain an azimuth setting of +1° or better. For all the
data presented here the azimuth error is less than +1°. ‘
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TABLE 1
MEASURED TRANSMITTANCE OF WRATTEN NO. 45 GELATINE FILTER
A T A T A T A T
(mg) (%) (mp) (%) (mg) (%) (mp) %)
203 0.0 433 1.0 40 0.0 70 89.8
10 0.0 40 3.4 50 0.0 80 89.5
20 0.0 50 10.0 60 0.0 90 89.8
40 0.0 60 15.0 70 0.0 900 89.8
50 0.0 70 17.0 80 0.0 10 89.8
60 0.0 80 17.6 90 0.0 20 89.8
70 0.0 490 16.9 700 0.3 30 89.8
80 0.0 500 14.4 10 3.3 40 89.8
90 0:0 10 10.0 20 19.0 50 89.8
300 0.0 20 5.3 30 42.5 60 89.5
10 0.0 30 2.0 40 62.0 70 89.8
20 0.0 536 1.0 50 74.5 80 89.8
30 0.0 40 0.3 60 80.8 90 90.0
40 0.0 546 0.1 770 84.0 1000 90.2
50 0.0 50 0.0 80 86.0 1100 90.8
60 0.0 60 0.0 90 87.0 1200 90.5
70 0.0 70 0.0 800 87.5 1300 86.5
80 0.0 80 0.0 10 87.8 1400 76.5
90 0.0 90 0.0 20 88.5 1500 56.5
400 0.0 600 0.0 30 88.8 1600 445
10 0.0 10 0.0 40 89.0 1700 35.0
20 0.0 20 0.0 50 89.5 1800 27.0
30 0.1 30 0.0 60 89.6 1900 22.0

The optical system of the underwater-photometer measuring head shown in plate
4, is a dual detecting system, each channel consisting of a 931A multiplier phototube
wrapped with black tape except for a window covered with a Wratten No. 45 blue-
green gelatine filter. The measured transmittance characteristics of this filter are
shown in table 1. Since the readings obtained are proportional to

Aa

ESTr Tw dx

Ay

E = Energy distribution of the light just below the surface
S = Spectral sensitivity of phototube

Tr = Transmittance of No. 45 filter

Tw = Transmittance of water path

A = Wave length of light

and since the combination ST establishes the value of the limiting wave length
Az at about 700 my or less, it can be seen that these data are tagged with an energy
distribution having half-band width of 64mu and extreme limits between 430 mpu
and 546 mp. Deep-water measurements in this region of the spectrum would not
necessarily require an auxiliary filter since the combination of water and phototube
sensitivity would provide all the “filtering” action required. In this work the
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Wratten No. 45 filter was used simply to make the shallow-water measurement con-
sistent in band width with the deep-water measurements.

In order to extend the range of measurement, each multiplier phototube is sur-
rounded by a cylinder containing openings covered by filters having neutral densi-
ties of about 0, 1, 2, 3, 4, and infinity. The window in the pressure housing is frosted
on the inside to assure a constant coupling factor between the collecting system and
the multiplier phototube. The internally baflled radiance tubes limit the angle of
acceptance to 6.6°. The whole head can be tilted through a range of somewhat more
than 180° by means of a synchronous motor. Kvent marks are automatically re-
corded at a specific angle at the beginning of the tilt sweep.

HOMOGENEITY OF THE WATER

Considering the intended application of these data, namely, to examine the ability
of current theory to describe and predict the passage of natural light through a
homogeneous hydrosol, it was of the utmost importance for the water sample to be
homogeneous. The favorable location of the barge and the absence of conditions
likely to produce inhomogeneity in the water have already been mentioned. The
water itself was also examined for evidence of inhomogeneity. This examination
consisted of the following tests:

A. Bathythermograph measurements. It is well known that certain lakes, includ-
ing Lake Pend Oreille, undergo seasonal changes in their temperature profile, that
warm weather will develop a layer of warm water at the surface and various kinds
of microdrganisms will “bloom” in or near this warm layer. Stratification of this
type means discontinuous changes in the structure of the light field as a function of
depth, a condition that would not yield suitable data. The absence of a thermocline
implies that the bloom has not occurred and that this source of inhomogeneity is
absent. )

Bathythermograph measurements were made at frequent intervals during the
entire operation and consistently showed no thermocline. The record for 16 March,
for example, shows a surface temperature of 2.35° C rising at constant rate t0 3.20°C
at 122 m depth. The record for 29 April shows a constant temperature of 3.6° C
from the surface to 137 m. More critical examination (on 29 April 1957) of the top-
9 m with a bucket thermometer showed 4.5° C at the surface, 4.0° C at 1.25 m and
4.0° below 1.25 m, indicating a calibration error in the bathythermograph that is
not significant to these light measurements, and possibly a slight surface heating
owing to full sunshine on 28 April. All other bathythermograph records were, hap-
pily, monotonously the same. )

B. Beam transmittance. Beam transmittance and its variability with depth were
measured with a beam transmissometer. Total transmittance for a collimated beam
of light was 67.3 per cent per meter at the surface and increased at a steady rate to
about 68.6 per cent per meter at 61 m (measurements of 29 April 1957). Other
determinations taken during the period of field operations showed no significant
variation from this condition.

C. Particulate matter. One- and two-liter samples were taken with a Nansen
bottle at discrete depths from 6 m to 60 m and filtered through Millipore H A
filters having a pore size of 0.45u (&) 0.02u. Results are shown in table 2.

Although each of the above tests seems to exhibit a trend with increasing depth the



368 Bulletin, Scripps Institution of Oceanography

trends are conflicting and the variations of the parameter in each instance is close
to the expected error. Definitive evidence of stratification or inhomogeneity was
considered to be absent during the period of the experiment.

Further evidence of the homogeneity of the lake water is provided by the results
of calculations from radiance distribution measurements.

TABLE 2

WEeicaT OF PARTICULATE MATTER FOUND IN
WaTeER SaMpPrES TAKEN FROM THE DEPTHS SHOWN

Depth Particulate matter
(meters) (mg per liter)

6.1 0.32+.07

12.2 0.37

24 .4 0.40

30.5 0.41

48.8 0.51

54.9 0.41

61.0 0.55

CONSTANCY OF SURFACE LIGHTING

The natural lighting on the surface of the water can undergo changes in ambient
Tevel and also in structure, that is, in the position of bright spots, such as the sun or
single white clouds, or in the relative proportions of specular to diffuse light. The
effect of very slow changes in ambient level can be successfully corrected but no
method is known at present which will properly correct for the effect of rapid
changes in ambient level or for the effect of changes in the structure of the light field.
One must wait for desirable lighting conditions and -even then may be forced to
reject some data because of these uncontrollable variables.

For several years now it has been the practice in this laboratory to monitor the
natural lighting at the surface with an instrument sensitive to both the light level
and to its structure, and, on the basis of this record, to sort and reject data. For the
data taken on 28 April no rejection was indicated.

PLAN OF OPERATION

The plan of operation was dictated to a large extent by azimuth and elevation
changes in the sun’s position, by the proposed computations from the data, and by
the operating characteristics of the instrument. For computational purposes, data
were needed at equally spaced azimuth intervals. A 20°-azimuth interval would give
eighteen continuous tilt sweeps with each measuring channel, or two complete
radiance distributions at a fixed depth station in 25 minutes. In the progress of such
a run a sweep by one radiance tube would be repeated 12.5 minutes later by the
sweep of the opposite radiance tube.

The most favorable period for making the measurements would be within two
hours each side of noon (sun time) since this is the period of minimum change in
sun elevation and consequently of minimum change in ambient light level and
structure. Allowing 30 minutes at each station would provide for eight stations
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between 1000 and 1400. Some ambient light-level changes would, of course, occur
during this 4-hour period because of changes in the position of the sun. In order to
obtain data on the zenith and nadir radiance for different depths which would be
independent of ambient light-level changes, a monitoring run was planned for noon.
For this run the radiance tubes were set in a vertical position and measurements
were made at discrete depths, including all station depths, in about 10 minutes.
Thus in the final data reduction all radiance distributions for the day could be
adjusted to a single sun altitude.

DISCUSSION AND TREATMENT OF DATA FOR
'CLEAR SUNNY CONDITIONS '

Data recording on 28 April was begun at 0850 at a depth of 66.1 m and continued
until 1441. The order of depth stations is important because the structure of the
light field is a function of depth as well as sun position. The order used is given in
table 3.

TABLE 3

ORDER OF DEPTH STATIONS FOR 28 APRIL 1957
(All times are Pacific Standard; sun noon occurred at very nearly 1140 P.S.T.)

Time Sun altitude ‘Sun azimuth
Depth (P.8.T.) Eltaixrxf:d (degrees) (degrees)
(meters) (minutes)

Start Stop Start Stop Start Stop
66.1.................... 0852 0924 32 41.0 45.5 119.0 127.5
53.7. . . 0927 0947 20 46.0 48.5 128.0 134.0
41.3. ... 0949 1009 20 48.5 51.0 135.0 142.0
20.0... ... ... 1012 1033 21 51.0 53.0 .| 143.0 150.5
16.6.................... 1039 1103 24 53.5 55.0 1563.0 162.5
10.4............. I 1105 1126 21 55.0 55.5. | 163.5 172.5
4.2, 1128 1152 24 55.5 55.5 173.5 183.5
Vertical run............... 1158 1210 12 .2 change 186.0 191.5
66.1...... ... .. ... .... 1211 1249 38 55.5 53.5 | 192.0 207.5
53.7......... D 1252 1313 21 53.0 51.5 208.5 216.0
41.3............ R | 1316 1338 22 51.0 48.5 217.0 224.5
200, ... ... 1341 1402 21 48.5 45.5 225.5 232.0
16.6............... ... ... 1405 1425 | 20 45.0 | 42.5 233.0 238.5
Vertical run............... 1432 1441 9 1.2 clhange 241.0 243.0

The original data clearly show the features of the environment. The image of the
sunlit barge wall is obvious at the shallow stations and the shadow of the barge
can be seen at all stations although it is not obvious at the deeper ones (see fig. 1).
The position of the “bright spot” is always recognizable and at the shallow stations
the edge of the “man hole” can be seen, as can the shadow of the instrument itself.
In addition, changes in the sun’s azimuth position and in its elevation can be de-
tected in the data.

In order to remove the effect of these unwanted parameters from the data the
following procedural steps were adopted:
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1. Calibration correction.—The original data, which are very nearly linearly pro-
portional to the log of the radiance, were read at 10-degree intervals of tilt with a
special “rule’” which converted the data to radiance units and at the same time
removed the small departures from linearity that were known to be present. Each
information channel, consisting of the multiplier phototube, the chassis and the
recorder, has its own calibration “rule.” The data for these rules were obtained at
the site of the experiment just before and just after the measurements.

2. Changes in ambient light levels.—Inspection of the data for the nadir direction
indicated the extent of the ambient light-level change owing to changes in the po-
sition of the sun. When necessary this has been corrected by normalizing all tilt
sweeps for the station to the average nadir reading.

3. Azimuth motion of the sun.—The data thus obtained were replotted on semi-log
paper, as shown in figure 1. The known azimuth angle between the sun and the
instrument heading has been used to locate each tilt sweep on the plot. Thus the
azimuth motion of the sun relative to the instrument is not superimposed on the
data. (For a complete explanation of figure 1, see step 5.)

4. Barge image and shadows.—The data points resulting from step 3 were joined
by smooth curves to give azimuth sweeps at constant tilt as well as tilt sweeps at
constant azimuth (see fig. 1). The image of the barge, its shadow, etc., can be posi-
tively identified in these plots. Sections of the data which were distorted by these
spurious signals were not used in the data reduction. The physical location of the

_instrument was such that a maximum of only about 54° of the horizontal sweep

was distorted by the presence of the barge. Data on the left of the sun’s plane in
figure 1 could be checked by superposing the data on the right of the sun’s plane.
The position of the sun was located by the maxima of the azimuth sweeps and
checked with the known position of the sun in each instance.

5. Graphical smoothing and interpolation of data.—In figure 1 the values of the
angles at the top, marked “instrument heading,” are relative t6 a fixed compass
direction. These angular values are related to the actual angle between the sun and
the “instrument heading” through elapsed time. In the depth station illustrated the
instrument was rotating “with the sun” and the actual angle was always less than
the indicated angle by the amount of angular change in the sun’s position during
the time interval between the beginning of one tilt sweep and the next. As an exam-
ple, in the time it took to complete a sequence of tilt sweeps from an indicated
instrument heading of 0° to one of 360° the sun’s position had changed 8°. Actual
rotation of the instrument from the sun was therefore 352°. Thus in the plot the
“instrument heading’”’ of 360° is plotted at 352° along the abscissa. The marks on
the “instrument heading” scale therefore represent the actual angle between the
instrument heading and the sun. Each mark coincides with the first datum point
of a tilt sweep. The instrument heading of 0° coincides with the tilt sweep whose
first datum point is double circled in figure 1. The data points on this particular tilt
sweep (solid circles) are identified with the scale of tilt angles 6 at the bottom of

. figure 1.

Each of the twenty-one tilt sweeps included in figure 1 will have a datum point
at 8 = 90° (for example). The procedure that has been used to plot the twenty-one -
tilt sweeps has placed the § = 90° points in proper relation to one another so that a
line joining them graphically represents an azimuth sweep at § = 90°. The other
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points of the figure have been similarly joined permitting a sort of two-dimensional
smoothing of all the data at once.

- During the experiment it was not practical to orient the instrument heading with
the sun’s position. Thus in the working plots the sun’s position, which is indicated
by the maxima of the azimuth sweeps, bears no relationship with the “‘instrument
heading” scale at the top. The scale marked ¢ (also at the top) has been drawn so
that ¢ = 0°is in the sun’s direction for the azimuth sweep marked 6 = 0° (a straight
line). (In figure 1 the sun’s direction, for the 6 = 0° curve only, solid square, happens
to coincide very nearly with the 340° instrument heading.) v

In order to obtain radiance data at equal intervals on each side of the sun’s
position and for all tilt angles, the ¢ scale is moved right 10° for each successive
azimuth sweep. For each such setting the desired data can be interpolated from the
azimuth curves. ‘ .

6. Duplicate runs.—Both information channels functioned perfectly during the
entire experiment and consequently duplicate runs were available at all depth
stations. These were treated independently through step 5, above, and the interpo-
lations were then averaged. A double run was made at the 66.1-m station giving a
total of four complete determinations at this depth. All four determinations are
averaged together in this instance. .

7. Depth-difference correction.—The ends of the brightness tubes are about 0.5 m
from the center of rotation of the measuring head. As a result the station depth does
not remain quite constant but changes continuously with tilt angle according to
the equation

: Zy=2 4rcosb.

Where Z; is the true depth, Z is the reported station depth to the center of rotation
of the instrument and r is the distance from the center of rotation to the end of the
radiance tube. : _ :

The averaged data from step 6 were corrected to give the radiance distribution
at a point by determining the slope of the curve of path radiance vs. depth for every
pair of values of tilt angle and azimuth angle and making the proper correction
along this slope. ‘

8. Sun altitude changes—In addition to changes in ambient light level at the
surface of the water, large changes in the altitude of the sun result in a change in
the ratio of the zenith to nadir path radiance and a reorientation of the whole
radiance distribution solid in the direction of the sun. The depth stations were
taken in the order shown in table 3 so that the shallow stations should be at noon
and the others clustered around noon in such a way that a complete set of stations
could be slected from those nearest noon. Changes in the shape of the distribution
solid owing to changes in the sun’s altitude were this way minimized.

9. Normalization to the vertical run.—Before the seven morning runs could be
normalized to the single vertical run at noon it was necessary to demonstrate that
the radiance distribution solid for the 66.1-m station was substantially the same
mn shape at 0908 as it would have been at 1200, that the radiance distribution solid
for the 53.7-m station was substantially the same in shape at 0937 as it would have
been at 1200, and so on. To do this the ratio of the average zenith to average nadir
reading for each depth station was compared with the ratio of the zenith to nadir
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reading found from the noon vertical run. For all depth stations, duplicate ratios
were found, indicating that no significant error is introduced by adjusting these runs
to a single sun altitude. It was also found that the complete data for the 66.1-m and
53.7-m morning stations duplicated the data for the 66.1-m and 53.7-m afternoon
stations. Since the former were completed two hours before sun noon and the latter
were obtained within about two hours after sun noon, this is further evidence that
changes in sun elevation did not significantly affect the shape of the distribution
solid at the deep stations. For the remaining morning stations the change 1In sun
altitude between station time and 1200 is very small indeed. After refraction the
change in sun angle from 1000 to 1200 is only four-tenths of the resolving power
of the radiance tube. It is progressively true throughout the morning data that the
large incremental changes in the sun’s altitude coincide with the depth stations
where such changes have the least effect on the shape of the distribution solid,
and the near-zero changes in sun’s altitude coincide with the near-surface data
where large changes would have had a very large effect.

On the strength of the above evidence, the data for the seven stations given in
tables 4, 5, 6, 7, 8, 9, and 10 are presented as data for one sun altitude.

" DATA FOR CLEAR SUNNY CONDITIONS

Data representing clear sunny conditions were obtained on 28 April 1957. The
voice-recorded notes for the day read as follows:

28 April 1957. It would not be possible to have a more perfect day for the sunny-sky case than
today. Between seven in the morning and three-thirty in the afternoon there were no overhead
clouds whatsoever. The few small clouds that did appear just over the mountain peaks rapidly
evaporated. At no time was it possible to see evidence of a high altitude cirrus layer. In addition
to this the lake was practically flat calm all day.

Later computations placed the clouds mentioned at an altitude of 13° in the
southern sky. They appeared one at a time and evaporated within 10 minutes.
Their angular subtense was never more than 1.5°. The optical state of the lake
surface is shown in the photograph, plate 5, taken on 28 April at about 1500.

The radiance distribution data for a clear sunny sky are given for seven depth
stations in tables 4 through 10, inclusive.

DISCUSSION OF DATA AND EVALUATION OF SOURCES OF ERROR

In the body of tables 4 through 10 the over-all variation in the value of radiance
at any one setting is &5 per cent of the radiance at that setting. This variation
includes instrument errors, reading and plotting errors, errors made in setting and
holding azimuth positions during the experiment, and in fact all errors that have
entered the measurements before their presentation in the tables.

Iu the direction of the sun, experimental azimuth steps of 20° move the acceptance
cone of the instrument a distance that is almost equal to the base diameter of the
acceptance cone. If the air-water boundary were flat the sun’s image would there-

"fore be within the cone only once during a complete set of azimuth settings. How-

ever, the direction of the sun is a glitter pattern whose size depends on the optical
state of the surface (which in turn depends on the wind velocity). During the
measurements of 28 April the wind velocity was less than 1 m per second which
would indicate a glitter pattern considerably smaller than 10° in angular subtense
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TABLE 9
RADIANCE DISTRIBUTION UNDER CLEAR SUNNY SKY

sun altitude, 56.6°)

IE

(Depth, 53.7 meters
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TABLE 10

RADIANCE DISTRIBUTION UNDER

CrEAR SUNNY SEY

itude, 56.6°)

sun alt

-
3

(Depth, 66.1 meters

Azimuth angle ()

Tilt angle
©)
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Tyler: Radiance Distribution as @ Function of Depth 381

(Cox and Munk, 1955), but larger than a single sun image. Owing to the optical
state of the surface on 28 April this glitter pattern probably consisted of widely
separated points of light. Because of the geometry discussed above it is possible that
the solid angle of acceptance never covered more than half of the glitter pattern.
This would mean that the reading obtained in the sun’s direction could be low by a
factor of 2. -

In certain directions, and especially at the shallow stations, the presence of the
glitter generates a noise signal that varies in both frequency and amplitude as a
function of depth. Typical high and low values of this noise, together with its fre-
quency, are given in table 11 for the direction of the sun. In tables 4 through 10
average experimental values for radiance are reported for all directions.

TABLE 11

AMPLITUDE AND FREQUENCY OF THE NOISE SIGNAL IN THE
DIRECTION OF THE SUN

Maximum variation Approximate
Depth £ & i
(meters) rom mea!;)ra iance (Qi?ﬁ?ﬁg
P TR , +93.6 128
10.4. . e +75.0 ‘ 74
16.6. +47 .4 60
O . e +10.5 50

DISCUSSION AND TREATMENT OF DATA FOR
| OVERCAST CONDITIONS

The diffuse nature of the surface lighting for overcast conditions makes it practical
to take data during a longer interval around noon than can be used for the clear
sunny sky. For the same reason the order in which the stations are run is far less
critical. The near-surface data for overcast sky shows the image features of the barge
and its shadow at lower contrast than before. The zenith readings at the near-surface
stations may exhibit greater variability with an overcast sky because of the time
variability in the zenith thickness of the overcast. In addition, the generally lower
light level puts the deeper stations experimentally beyond reach. Except for these
slight differences the experimental procedure was the same for obtaining the over-
cast data as it was for obtaining clear sunny data.

The overcast data have been treated by the same procedure used for the clear
sunny day data as described in steps 1 through 9, inclusive, with slight modification.
Steps 8 and 9 do not, of course, apply as critically to diffuse lighting as they do to
the combination of diffuse plus specular lighting provided by a clear sunny day. In
step 6, two complete runs of overcast sky data at each depth station were averaged.

DATA FOR OVERCAST CONDITIONS

The voice recorded notes for 16 March, the overcast day, read in part as follows:

The data from about 1030 on are all excellent overcast data. The instrument was working
perfectly. . . . Today’s wind velocities ranged from 10 knots at about 1100 to about 2 knots at 1215.
At 1400 the water on the south side of the barge where we are operating was as nearly calm as I
have seenit.... - :

The radiance distribution data for the overcast condition are given for five depth
stations in tables 12 through 16, inclusive.
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Tyler: Radiance Distribution as a Function of Depth 387

DISCUSSION OF DATA AND EVALUATION OF SOURCES OF ERROR

The data presented in tables 12 through 16 are correct to better than 45 per cent
of the listed value at each entry. Noise due to wave action, and excessive errors in
the direction of the sun, are not manifest in the overcast data.

ASYMPTOTIC RADIANCE DISTRIBUTION

1t has long been conjectured and perhaps first clearly stated by Whitney (1941a, )
that the radiance distribution in an optically deep and homogeneous hydrosol ap-
proaches a characteristic shape with increasing depth. This final distribution is
referred to as the asymptotic radiance distribution because of the manner of its
approach to the final shape. Recently Preisendorfer (19584, b) has developed a
proof of the existence oi asymptotic radiance distribution which shows that the
final shape depends only on the inherent optical properties of the hydrosol, ie., the
volume scattering function and the absorption coefficient. It is independent of the
lighting conditions at the surface of the water and of the optical state of the water
surface. As the absorption coefficient approaches zero in a scattering-absorbing
medium the asymptotic radiance distribution tends to become a sphere, whereas if
the scattering coefficient approaches zero the final shape tends to be a vertical line.
In between these limits there will be an infinite variety of prolate surfaces of revolu-
tion oriented with the poles along the vertical axis, each one characteristic of the
inherent optical properties of a particular hydrosol. '

The transformation of radiance distribution from the complex structure found
near the surface to its final symmetrical shape at great depth will require enhance-
ment of radiance in some directions, attenuation in others.

This is evident in the data shown in figure 2 and to some extent in the tables of
radiance data, and can be deduced from theory in the following way. Starting with
the equation of transfer for radiance (1), see Preisendorfer (1958a),

0s © Ww%@ — _aZ)N(Z, 6, %) + N«(Z, 0, ®) M
where @ is the azimuth angle from the zenith
& is the azimuth angle from the sun
Z is the depth
N is the radiance
« is the total attenuation coefficient
N . is the path function ‘

dN, N, and N are all taken at the same depth (Z) and in the same direction (0,®).
We note that the attenuation coefficient (K) for radiance for this same depth and
direction is by definition '

1 dN(Z,0,9)
K(Z,8,%) = ~ 76,3 dz

(2)
Thus .
N+ (2,0, 9) | 3)

(cosO)K(Z, 0,®) = o(Z) — NZ 6. %)
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By definition

N. (Z,0,3) = f v (Z,0,®, 0, 8 )\NZ, 0, &) de

over all
directions

where the volume scattering function ¢ has direction O, ® for incident radiance in
the direction ©’, ®'. For shallow depths the sun is by far the most important contri-
bution to N+ and we can let ©’, ® describe the incident radiance from the sun only,
that is,

0’ = 65
P = Py
N = Ng

and the solid angle @ = Qs, the solid angle of the sun.
Then N«(Z, 6, ®) may be approximated by the equation
N+«(Z,06,®) = o(Z,0,®, 05, s) NsQs .

Equation (3) can thus be written

~ 1 _a(Z,B,@,GV)N 9] |
K09~ 12 | e a B @

For the three directions illustrated in figure 2 specific values of ©® and ® can be
assigned as shown below; and the negative slope, K, of the curves of figure 2 can be
roughly predicted for a fixed depth Z near the surface by equations 5, 6, and 7.

Direction ) ® N(Z, e, %) o(Z, 0, ®, O3, &3)
Zenith.... ... 0 0 Neenitn 24° forward scattering = o
Sunv........... Os ®s | Nan forward scattering within the beam = o9
Nadir. ... .... T 0 Nooair 156° backward scattering = o156

(The underwater angle of the sun from the zenith (eS) for the clear sunny da,y
data presented in this report is about 24°.)

g24 NS QS

Koenith = o — —W | (5)
L], _._,N___?L] |

Bom = cosOg [a Ns | (6)

Knad-ir = — [a _— %@g] (7)

It can be seen from equation 5 that when N e is sufficiently dark, as it is when
seen from a depth of less than 4 m at Lake Pend Oreille on a clear sunny day, the
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second term on the right of the equation will be larger than « and a positive slope
will result in figure 2. With increasing depth N senimn InCrEases until the two terms on
the right of equation 5 are equal and the slope becomes zero.

In the direction of the sun (eq. 6) the second term on the right of the equation
will be minimized owing to the presence of Ng in the denominator. The slope in
figure 2 will therefore be negative and maximum near the surface as shown but will
become smaller as Ng decreases with depth.

In the nadir direction (eq. 7) the second term will always be larger than a but
the change in sign ensures that the slope of the curve in figure 2 will always be
negative. Also since the ratio Ns/Nneair Will not change greatly with depth, the
value of K would be expected to remain nearly constant.

Trom this brief example the value of radiance K data in following and predicting
the changes in shape of the radiance distribution solid as a function of depth can
easily be seen. By means of radiance K data the radiance distribution at other
depths can be extrapolated and a quantitative estimate of the proximity to asymp-
totic distribution can be obtained.

Radiance K data for clear sunny conditions are given in tables 17 through 23,

and for overcast conditions, in tables 24 through 28.
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Azimuth Control
Box
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\Photometer|
Head
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Propeller Confrol Box

Underwater photometer measuring head and positioning mechanisms.
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Repeater
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Underwater photometer control panel and power supply.
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BULL. SCRIPPS INST. OCEANOGR. VOL. 7 [TYLER] PLATE 3

The underwater photometer mounted and ready for lowering into Lake Pend Oreille, Idaho.
The measuring head with its Gershun tubes is on the right and the propeller and damping fin
are on the left. :
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Ly . S o - =

g head of the underwater photometer. The two mi
al density steps ean be seen in the central as
one of which is showr

L T Disassembled view of the measurin
phototubes with the cylinders containing neutr
i The Gershun tubes (not shown) are mounted over the windows,

B housing at the top.
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Optical state of the lake surface on 28 April. Arrows indicate points
where wires pass through air-water interface.
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